Acute myeloid leukemia overview: Difference between revisions

Jump to navigation Jump to search
Shyam Patel (talk | contribs)
Shyam Patel (talk | contribs)
Line 20: Line 20:


==Pathophysiology==
==Pathophysiology==
Acute myeloid leukemia arises from [[myeloblasts]], which are hematologic white cells that are normally involved in [[hematopoiesis]]. Genetic translocations involved in the pathogenesis of acute myeloid leukemia include translocations between chromosome 8 and 21 t(8;21) and translocations between chromosome 15 and 17 t(15;17). Inversions in the chromosomal translocations in chromosome 16 inv(16) are involved in the pathogenesis of acute myeloid leukemia.
Normal hematopoiesis involves the production of blood cells, and this normal physiologic process is dysregulated in acute myeloid leukemia. The pathophysiology of acute myeloid leukemia involves multiple mechanisms, including altered signal transduction and autonomous proliferation, [[differentiation]] blockade, evasion of apoptosis, and self-renewal. The pathophysiology of [[acute promyelocytic leukemia]] specifically involves a fusion protein that results from a translocation between chromosomes 15 and 17.


==Causes==
==Causes==

Revision as of 05:03, 1 November 2018

https://https://www.youtube.com/watch?v=itkRVTqfPsE%7C350}}

Acute myeloid leukemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Acute myeloid leukemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardigram

Chest X Ray

Echocardiograph and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Acute myeloid leukemia overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Acute myeloid leukemia overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Acute myeloid leukemia overview

CDC on Acute myeloid leukemia overview

Acute myeloid leukemia overview in the news

Blogs on Acute myeloid leukemia overview

Directions to Hospitals Treating Acute myeloid leukemia

Risk calculators and risk factors for Acute myeloid leukemia overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Raviteja Guddeti, M.B.B.S. [2] Carlos A Lopez, M.D. [3] Shyam Patel [4]

Overview

Acute myeloid leukemia (AML) is a cancer of the myeloid line of white blood cells characterized by the rapid proliferation of abnormal cells which accumulate in the bone marrow and interfere with the production of normal blood cells. This leukemia arises from myeloblasts, which are hematologic white cells that are normally involved in hematopoiesis. Acute myeloid leukemia may be classified according to the French-American-British (FAB) classification and World Health Organization (WHO). Acute myeloid leukemia must be differentiated from other diseases such as acute lymphoblastic leukemia, chronic myeloid leukemia, agranulocytosis, aplastic anemia and lymphoma. In 2015, the incidence of acute myeloid leukemia was approximately 6.5 per 100,000 individuals with a case-fatality rate of approximately 50% in the United States. The incidence of acute myeloid leukemia increases with age. Common risk factors in the development of acute myeloid leukemia are myelodysplastic syndromes, aplastic anemia, myelofibrosis and paroxysmal nocturnal hemoglobinuria. Common complications include infections, disseminated intravascular coagulation, and hemorrhage. Symptoms of acute myeloid leukemia include fever, fatigue, weight loss and loss of appetite. Physical examination findings of acute myeloid leukemia include anemia, fever, pallor, Leukemia cutis, bruising, petechiae, ecchymosis and tachycardia. Laboratory findings consistent with the diagnosis of acute myeloid leukemia include leukocytosis, thrombocytopenia, anemia and leucopenia. If a lung infection is suspected chest x-ray may be helpful in the diagnosis. The mainstay therapy is chemotherapy and usually includes a combination of daunorubicin, cytarabine and etoposide or mitoxantrone and anabolic steroids. Supportive care includes intravenous nutrition, antimicrobial therapy, and replacement of blood products.

Historical Perspective

In the 17th and 18th centuries, scientists first described blood cells, which are the malignant cells in acute myeloid leukemia. In the 19th century, the first case of acute leukemia was described. In the 20th century, chemotherapy was introduced for the treatment of acute leukemia. The 21st century witnessed advancements in the understanding of disease biology, and targeted therapies for acute myeloid leukemia were introduced to the market.

Classification

There are 3 classifications systems for acute myeloid leukemia. These include the French-American-British (FAB) classification, the World Health Organization (WHO) classification, and the European LeukemiaNet (ELN) classification. The original classification was the French-American-British (FAB) classification, and the most recent classification was the 2017 European LeukemiaNet (ELN) classification.

Pathophysiology

Normal hematopoiesis involves the production of blood cells, and this normal physiologic process is dysregulated in acute myeloid leukemia. The pathophysiology of acute myeloid leukemia involves multiple mechanisms, including altered signal transduction and autonomous proliferation, differentiation blockade, evasion of apoptosis, and self-renewal. The pathophysiology of acute promyelocytic leukemia specifically involves a fusion protein that results from a translocation between chromosomes 15 and 17.

Causes

There are no established causes for acute myeloid leukemia.

Differentiating Acute lymphoblastic leukemia from other Diseases

Acute myeloid leukemia must be differentiated from other diseases such as acute lymphoblastic leukemia, chronic myeloid leukemia, agranulocytosis, aplastic anemia and lymphoma.

Epidemiology and Demographics

In 2015, the incidence of acute myeloid leukemia was approximately 6.5 per 100,000 individuals with a case-fatality rate of approximately 50% in the United States. The incidence of acute myeloid leukemia increases with age; the median age at diagnosis is 63 years. Males are more commonly affected with acute myeloid leukemia than women. The male to female ratio is approximately 1.3 to 1.

Risk Factors

Common risk factors in the development of acute myeloid leukemia are myelodysplastic or myeloproliferative syndromes, aplastic anemia, myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, chemical exposure and several congenital conditions such as Down syndrome, Bloom syndrome, Fanconi anemia, neurofibromatosis and congenital neutropenia.

Natural History, Complications, and Prognosis

Common complications of acute myeloid leukemia include infections, disseminated intravascular coagulation, pyoderma gangrenosum, hemorrhage and complications due to side effects of chemotherapy. Prognosis of acute myelogenous leukemia depends on cytogenetics. Cytogenetics that indicate a good prognosis include inversions in chromosome 16 inv(16), translocations between chromosome 8 and 21 t(8;21) and translocations between chromosome 15 and 17 t(15;17).

Diagnosis

History and Symptoms

Symptoms of acute myeloid leukemia include fever, fatigue, weight loss and loss of appetite.

Physical Examination

Common physical examination findings of acute myeloid leukemia include anemia, fever, pallor, Leukemia cutis, bruising, petechiae, ecchymosis and tachycardia.

Laboratory Findings

Laboratory findings consistent with the diagnosis of acute myeloid leukemia include leukocytosis, thrombocytopenia, anemia, leucopenia and peripheral blood smear.

Chest X Ray

If a lung infection is suspected chest x-ray may be helpful in the diagnosis of acute myeloid leukemia.

CT

CT scan may be helpful in the diagnosis of acute myeloid leukemia.

Other Diagnostic Studies

Other diagnostic studies for acute myeloid leukemia include cytochemistry, flow cytometry, immunohistochemistry, PCR and biopsy.

Medical Therapy

The mainstay therapy from acute myeloid leukemia is chemotherapy and usually includes a combination of daunorubicin, cytarabine and etoposide or mitoxantrone and anabolic steroids. Supportive care includes intravenous nutrition, antimicrobial therapy, and replacement of blood products.

Surgery

Surgery is not the first-line treatment option for patients with acute myeloid leukemia, it is used to place a venous access device as a port through which chemotherapy can be delivered.

References

Template:Hematology



Template:WikiDoc Sources