PCNT: Difference between revisions
m Bot: HTTP→HTTPS |
→Clinical significance: removed sentence which was a nonsensical mash-up of an irrelevant (to this article) sentence in the cited source. |
||
Line 1: | Line 1: | ||
{{ | {{Infobox gene}} | ||
'''Pericentrin (kendrin | '''Pericentrin''' ('''kendrin'''), also known as '''PCNT''' and '''pericentrin-B''' ('''PCNTB'''), is a [[protein]] which in humans is encoded by the ''PCNT'' [[gene]] on chromosome 21.<ref name="entrez">{{cite web | title = Entrez Gene: PCNT pericentrin (kendrin)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5116| accessdate = }}</ref><ref name="pmid8812505">{{cite journal | vauthors = Chen H, Gos A, Morris MA, Antonarakis SE | title = Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter | journal = Genomics | volume = 35 | issue = 3 | pages = 620–4 | date = Aug 1996 | pmid = 8812505 | doi = 10.1006/geno.1996.0411 }}</ref><ref name="pmid10823944">{{cite journal | vauthors = Flory MR, Moser MJ, Monnat RJ, Davis TN | title = Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 97 | issue = 11 | pages = 5919–23 | date = May 2000 | pmid = 10823944 | pmc = 18534 | doi = 10.1073/pnas.97.11.5919 }}</ref><ref name="pmid11171385">{{cite journal | vauthors = Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R | title = Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1 | journal = Journal of Cell Science | volume = 114 | issue = Pt 4 | pages = 797–809 | date = Feb 2001 | pmid = 11171385 }}</ref> This protein [[subcellular localization|localizes]] to the [[centrosome]] and recruits proteins to the [[pericentriolar matrix]] (PCM) to ensure proper centrosome and [[mitotic spindle]] formation, and thus, uninterrupted [[cell cycle]] progression.<ref name="entrez" /><ref name="pmid20567258">{{cite journal | vauthors = Liu Q, Yu J, Zhuo X, Jiang Q, Zhang C | title = Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle | journal = Cell Research | volume = 20 | issue = 8 | pages = 948–62 | date = Aug 2010 | pmid = 20567258 | doi = 10.1038/cr.2010.89 }}</ref><ref name="pmid24466316">{{cite journal | vauthors = Kim S, Rhee K | title = Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis | journal = PLoS ONE | volume = 9 | issue = 1 | pages = e87016 | date = 2014 | pmid = 24466316 | doi = 10.1371/journal.pone.0087016 | pmc=3899370}}</ref><ref name="pmid21270239">{{cite journal | vauthors = Huang-Doran I, Bicknell LS, Finucane FM, Rocha N, Porter KM, Tung YC, Szekeres F, Krook A, Nolan JJ, O'Driscoll M, Bober M, O'Rahilly S, Jackson AP, Semple RK | title = Genetic defects in human pericentrin are associated with severe insulin resistance and diabetes | journal = Diabetes | volume = 60 | issue = 3 | pages = 925–35 | date = Mar 2011 | pmid = 21270239 | doi = 10.2337/db10-1334 | pmc=3046854}}</ref><ref name="pmid18955030">{{cite journal | vauthors = Shimizu S, Matsuzaki S, Hattori T, Kumamoto N, Miyoshi K, Katayama T, Tohyama M | title = DISC1-kendrin interaction is involved in centrosomal microtubule network formation | journal = Biochemical and Biophysical Research Communications | volume = 377 | issue = 4 | pages = 1051–6 | date = Dec 2008 | pmid = 18955030 | doi = 10.1016/j.bbrc.2008.10.100 }}</ref> This gene is implicated in many [[disease]]s and [[disorder (medicine)|disorder]]s, including [[congenital disorder]]s such as [[microcephalic osteodysplastic primordial dwarfism type II]] (MOPDII) and [[Seckel syndrome]].<ref name="pmid20567258"/><ref name="pmid24466316"/> | ||
== Structure == | == Structure == | ||
Line 16: | Line 16: | ||
== Clinical significance == | == Clinical significance == | ||
Mutations in the ''PCNT'' gene have been linked to [[Down syndrome]] (DS); two types of [[primordial dwarfism]], MOPDII and Seckel syndrome; [[intrauterine growth retardation]]; [[cardiomyopathy]]; early onset [[type 2 diabetes]]; [[chronic myeloid leukemia]] (CML); [[bipolar affective disorder]]; and other [[congenital disorder]]s .<ref name="pmid20567258"/><ref name="pmid24466316"/><ref name="pmid18955030"/><ref name="pmid23979692"/><ref name="pmid22722493"/><ref name="pmid24106199"/><ref name="pmid24106199"/> In particular, the short stature and small brain size characteristic of MOPDII and Seckel syndrome have been attributed to centrosome dysfunction and cell growth disruption as a result of PCNT malfunction.<ref name="pmid20567258"/> Additionally, [[premature aging]], cerebral involution, [[inflammation|inflammatory]] and [[immune]] responses are linked to DS associated with ''PCNT'' mutations, while severe [[insulin resistance]], [[diabetes]], and [[dyslipidemia]] are featured in MOPDII associated with ''PCNT'' mutations.<ref name="pmid21270239"/><ref name="pmid23979692 | Mutations in the ''PCNT'' gene have been linked to [[Down syndrome]] (DS); two types of [[primordial dwarfism]], MOPDII and Seckel syndrome; [[intrauterine growth retardation]]; [[cardiomyopathy]]; early onset [[type 2 diabetes]]; [[chronic myeloid leukemia]] (CML); [[bipolar affective disorder]]; and other [[congenital disorder]]s .<ref name="pmid20567258"/><ref name="pmid24466316"/><ref name="pmid18955030"/><ref name="pmid23979692"/><ref name="pmid22722493"/><ref name="pmid24106199"/><ref name="pmid24106199"/> In particular, the short stature and small brain size characteristic of MOPDII and Seckel syndrome have been attributed to centrosome dysfunction and cell growth disruption as a result of PCNT malfunction.<ref name="pmid20567258"/> Additionally, [[premature aging]], cerebral involution, [[inflammation|inflammatory]] and [[immune]] responses are linked to DS associated with ''PCNT'' mutations, while severe [[insulin resistance]], [[diabetes]], and [[dyslipidemia]] are featured in MOPDII associated with ''PCNT'' mutations.<ref name="pmid21270239"/><ref name="pmid23979692"/> | ||
== Interactions == | == Interactions == |
Revision as of 22:29, 8 January 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Pericentrin (kendrin), also known as PCNT and pericentrin-B (PCNTB), is a protein which in humans is encoded by the PCNT gene on chromosome 21.[1][2][3][4] This protein localizes to the centrosome and recruits proteins to the pericentriolar matrix (PCM) to ensure proper centrosome and mitotic spindle formation, and thus, uninterrupted cell cycle progression.[1][5][6][7][8] This gene is implicated in many diseases and disorders, including congenital disorders such as microcephalic osteodysplastic primordial dwarfism type II (MOPDII) and Seckel syndrome.[5][6]
Structure
PCNT is a 360 kDa protein which contains a series of coiled coil domains and a highly conserved PCM targeting motif called the PACT domain near its C-terminus.[1][4][5][6][7][9][10] The PACT domain is responsible for targeting the protein to the centrosomes and attaching it to the centriole walls during interphase.[5][6] In addition, PCNT possesses five nuclear export sequences which all contribute to its nuclear export into the cytoplasm, as well as one nuclear localization signal composed of three clusters of basic amino acids, all of which contribute to the protein’s nuclear localization.[5]
PCNTB, a cDNA homolog of PCNT, was identified and described by Li et al. to share a sequence identity of 61% and similarity of 75%. However, compared to PCNT, PCNTB contains an additional coiled coil domain and unique 1000-residue C-terminus, suggesting that these two may be separate proteins in a new CPM superfamily.[4] As with PCNT, the C-terminus of PCNTB contains functional domains for centriole localization and CEP215 binding. The N-terminus may also contain a functional domain that associates with the C-terminus domain, and this association is required for engagement with the centriole.[11]
Function
The protein encoded by this gene is expressed in the cytoplasm and centrosome throughout the cell cycle, and to a lesser extent, in the nucleus. It is an integral component of the PCM, which is a centrosome scaffold that anchors microtubule nucleating complexes and other centrosomal proteins.[1][4][5][7][11][12] In one model, PCNT complexes with CEP215 and is phosphorylated by PLK1, leading to PCM component recruitment and organization, centrosome maturation, and spindle formation.[6][11] The protein controls the nucleation of microtubules by interacting with the microtubule nucleation component γ-tubulin, thus anchoring the γ-tubulin ring complex to the centrosome, which is essential for bipolar spindle formation and chromosome assembly in early mitosis.[1][5][6][7][8] This ensures normal function and organization of the centrosomes, mitotic spindles, and cytoskeleton, and by extension, regulation over cell cycle progression and checkpoints.[1][5][6][7][12] Downregulation of PCNT disrupted mitotic checkpoints and arrested the cell at the G2/M checkpoint, leading to cell death.[10][12] Moreover, microtubule functioning was also disrupted, resulting in mono- or multipolar spindles, chromosomal misalignment, premature sister chromatid separation, and aneuploidy.[6][12]
PCNT is highly abundant in skeletal muscle, indicating that it may be involved in muscle insulin action.[7] PCNT is also involved in neuronal development through its interaction with DISC1 to regulate microtubule organization.[8]
Clinical significance
Mutations in the PCNT gene have been linked to Down syndrome (DS); two types of primordial dwarfism, MOPDII and Seckel syndrome; intrauterine growth retardation; cardiomyopathy; early onset type 2 diabetes; chronic myeloid leukemia (CML); bipolar affective disorder; and other congenital disorders .[5][6][8][10][11][12][12] In particular, the short stature and small brain size characteristic of MOPDII and Seckel syndrome have been attributed to centrosome dysfunction and cell growth disruption as a result of PCNT malfunction.[5] Additionally, premature aging, cerebral involution, inflammatory and immune responses are linked to DS associated with PCNT mutations, while severe insulin resistance, diabetes, and dyslipidemia are featured in MOPDII associated with PCNT mutations.[7][10]
Interactions
PCNT has been shown to interact with:
- calmodulin,[1]
- separase,[11]
- CEP215,[6]
- CHD3/4,[5]
- protein kinase A,[5]
- protein kinase C,[5]
- DISC1,[5]
- γ-tubulin complex proteins,[5] and
- PCM1.[4][4][5]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 "Entrez Gene: PCNT pericentrin (kendrin)".
- ↑ Chen H, Gos A, Morris MA, Antonarakis SE (Aug 1996). "Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter". Genomics. 35 (3): 620–4. doi:10.1006/geno.1996.0411. PMID 8812505.
- ↑ Flory MR, Moser MJ, Monnat RJ, Davis TN (May 2000). "Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin". Proceedings of the National Academy of Sciences of the United States of America. 97 (11): 5919–23. doi:10.1073/pnas.97.11.5919. PMC 18534. PMID 10823944.
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R (Feb 2001). "Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1". Journal of Cell Science. 114 (Pt 4): 797–809. PMID 11171385.
- ↑ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 Liu Q, Yu J, Zhuo X, Jiang Q, Zhang C (Aug 2010). "Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle". Cell Research. 20 (8): 948–62. doi:10.1038/cr.2010.89. PMID 20567258.
- ↑ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 Kim S, Rhee K (2014). "Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis". PLoS ONE. 9 (1): e87016. doi:10.1371/journal.pone.0087016. PMC 3899370. PMID 24466316.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Huang-Doran I, Bicknell LS, Finucane FM, Rocha N, Porter KM, Tung YC, Szekeres F, Krook A, Nolan JJ, O'Driscoll M, Bober M, O'Rahilly S, Jackson AP, Semple RK (Mar 2011). "Genetic defects in human pericentrin are associated with severe insulin resistance and diabetes". Diabetes. 60 (3): 925–35. doi:10.2337/db10-1334. PMC 3046854. PMID 21270239.
- ↑ 8.0 8.1 8.2 8.3 Shimizu S, Matsuzaki S, Hattori T, Kumamoto N, Miyoshi K, Katayama T, Tohyama M (Dec 2008). "DISC1-kendrin interaction is involved in centrosomal microtubule network formation". Biochemical and Biophysical Research Communications. 377 (4): 1051–6. doi:10.1016/j.bbrc.2008.10.100. PMID 18955030.
- ↑ Gillingham AK, Munro S (Dec 2000). "The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin". EMBO Reports. 1 (6): 524–9. doi:10.1093/embo-reports/kvd105. PMC 1083777. PMID 11263498.
- ↑ 10.0 10.1 10.2 10.3 Salemi M, Barone C, Romano C, Salluzzo R, Caraci F, Cantarella RA, Salluzzo MG, Drago F, Romano C, Bosco P (Nov 2013). "Pericentrin expression in Down's syndrome". Neurological Sciences. 34 (11): 2023–5. doi:10.1007/s10072-013-1529-z. PMID 23979692.
- ↑ 11.0 11.1 11.2 11.3 11.4 Lee K, Rhee K (Jul 2012). "Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis". Cell Cycle. 11 (13): 2476–85. doi:10.4161/cc.20878. PMID 22722493.
- ↑ 12.0 12.1 12.2 12.3 12.4 12.5 Unal S, Alanay Y, Cetin M, Boduroglu K, Utine E, Cormier-Daire V, Huber C, Ozsurekci Y, Kilic E, Simsek Kiper OP, Gumruk F (Feb 2014). "Striking hematological abnormalities in patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II): a potential role of pericentrin in hematopoiesis". Pediatric Blood & Cancer. 61 (2): 302–5. doi:10.1002/pbc.24783. PMID 24106199.
Further reading
- Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O, Nagase T (Jun 2002). "Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones". DNA Research. 9 (3): 99–106. doi:10.1093/dnares/9.3.99. PMID 12168954.
- Chen H, Gos A, Morris MA, Antonarakis SE (Aug 1996). "Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter". Genomics. 35 (3): 620–4. doi:10.1006/geno.1996.0411. PMID 8812505.
- Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Oct 1997). "Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 4 (5): 307–13. doi:10.1093/dnares/4.5.307. PMID 9455477.
- Diviani D, Langeberg LK, Doxsey SJ, Scott JD (Apr 2000). "Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain". Current Biology. 10 (7): 417–20. doi:10.1016/S0960-9822(00)00422-X. PMID 10753751.
- Flory MR, Moser MJ, Monnat RJ, Davis TN (May 2000). "Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin". Proceedings of the National Academy of Sciences of the United States of America. 97 (11): 5919–23. doi:10.1073/pnas.97.11.5919. PMC 18534. PMID 10823944.
- Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML (May 2000). "The DNA sequence of human chromosome 21". Nature. 405 (6784): 311–9. doi:10.1038/35012518. PMID 10830953.
- Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R (Feb 2001). "Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1". Journal of Cell Science. 114 (Pt 4): 797–809. PMID 11171385.
- Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (Sep 2002). "Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex". Molecular Biology of the Cell. 13 (9): 3235–45. doi:10.1091/mbc.E02-02-0112. PMC 124155. PMID 12221128.
- Flory MR, Davis TN (Sep 2003). "The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene". Genomics. 82 (3): 401–5. doi:10.1016/S0888-7543(03)00119-8. PMID 12906865.
- Chang F, Re F, Sebastian S, Sazer S, Luban J (Apr 2004). "HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes". Molecular Biology of the Cell. 15 (4): 1793–801. doi:10.1091/mbc.E03-09-0691. PMC 379276. PMID 14767062.
- Miyoshi K, Asanuma M, Miyazaki I, Diaz-Corrales FJ, Katayama T, Tohyama M, Ogawa N (May 2004). "DISC1 localizes to the centrosome by binding to kendrin". Biochemical and Biophysical Research Communications. 317 (4): 1195–9. doi:10.1016/j.bbrc.2004.03.163. PMID 15094396.
- Jurczyk A, Gromley A, Redick S, San Agustin J, Witman G, Pazour GJ, Peters DJ, Doxsey S (Aug 2004). "Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly". The Journal of Cell Biology. 166 (5): 637–43. doi:10.1083/jcb.200405023. PMC 2172416. PMID 15337773.
- Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K, Sugano S (Sep 2004). "Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions". Genome Research. 14 (9): 1711–8. doi:10.1101/gr.2435604. PMC 515316. PMID 15342556.
- Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY (Dec 2005). "Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis". The Journal of Biological Chemistry. 280 (51): 42237–41. doi:10.1074/jbc.M510139200. PMID 16251193.
- Nousiainen M, Silljé HH, Sauer G, Nigg EA, Körner R (Apr 2006). "Phosphoproteome analysis of the human mitotic spindle". Proceedings of the National Academy of Sciences of the United States of America. 103 (14): 5391–6. doi:10.1073/pnas.0507066103. PMC 1459365. PMID 16565220.