As with many other synaptic genes, including its binding partner Shank2, DLGAP2 has been shown to be associated with Autism.<ref name="pmid20531469">{{cite journal| vauthors=Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R| title=Functional impact of global rare copy number variation in autism spectrum disorders. | journal=Nature | year= 2010 | volume= 466 | issue= 7304 | pages= 368–72 | pmid=20531469 | doi=10.1038/nature09146 | pmc=3021798 |display-authors=etal}}</ref>
As with many other synaptic genes, including its binding partner Shank2, DLGAP2 has been shown to be associated with Autism.<ref name="pmid20531469">{{cite journal| vauthors=Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R| title=Functional impact of global rare copy number variation in autism spectrum disorders. | journal=Nature | year= 2010 | volume= 466 | issue= 7304 | pages= 368–72 | pmid=20531469 | doi=10.1038/nature09146 | pmc=3021798 |display-authors=etal| url=http://www.hal.inserm.fr/inserm-00521387/document}}</ref>
The product of this gene is one of the membrane-associated guanylate kinases localized at postsynaptic density in neuronal cells. These kinases are a family of signaling molecules expressed at various submembrane domains and contain the PDZ, SH3 and the guanylate kinase domains. This protein may play a role in the molecular organization of synapses and in neuronal cell signaling. Alternatively spliced transcript variants encoding different isoforms have been identified, but their full-length nature is not known.[3]
Interactions
DLGAP2 has been shown to interact with DLG4, the canonical synapse marker protein, which in turn binds to N-methyld-aspartate (NMDA) receptors and Shaker-type K+ channels.[4]
Clinical significance
As with many other synaptic genes, including its binding partner Shank2, DLGAP2 has been shown to be associated with Autism.[5]
References
↑Satoh K, Yanai H, Senda T, Kohu K, Nakamura T, Okumura N, Matsumine A, Kobayashi S, Toyoshima K, Akiyama T (Oct 1997). "DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95". Genes Cells. 2 (6): 415–24. doi:10.1046/j.1365-2443.1997.1310329.x. PMID9286858.
↑Ranta S, Zhang Y, Ross B, Takkunen E, Hirvasniemi A, de la Chapelle A, Gilliam TC, Lehesjoki AE (Sep 2000). "Positional cloning and characterisation of the human DLGAP2 gene and its exclusion in progressive epilepsy with mental retardation". Eur J Hum Genet. 8 (5): 381–4. doi:10.1038/sj.ejhg.5200440. PMID10854099.
↑Takeuchi M, Hata Y, Hirao K, Toyoda A, Irie M, Takai Y (1997). "SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density". J. Biol. Chem. 272 (18): 11943–51. doi:10.1074/jbc.272.18.11943. PMID9115257.
Takeuchi M, Hata Y, Hirao K, et al. (1997). "SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density". J. Biol. Chem. 272 (18): 11943–51. doi:10.1074/jbc.272.18.11943. PMID9115257.
Naisbitt S, Kim E, Weinberg RJ, et al. (1997). "Characterization of guanylate kinase-associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90". J. Neurosci. 17 (15): 5687–96. PMID9221768.
Ranta S, Lehesjoki AE, de Fatima Bonaldo M, et al. (1997). "High-resolution mapping and transcript identification at the progressive epilepsy with mental retardation locus on chromosome 8p". Genome Res. 7 (9): 887–96. doi:10.1101/gr.7.9.887. PMID9314494.
Hirao K, Hata Y, Ide N, et al. (1998). "A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins". J. Biol. Chem. 273 (33): 21105–10. doi:10.1074/jbc.273.33.21105. PMID9694864.
Kawabe H, Hata Y, Takeuchi M, et al. (1999). "nArgBP2, a novel neural member of ponsin/ArgBP2/vinexin family that interacts with synapse-associated protein 90/postsynaptic density-95-associated protein (SAPAP)". J. Biol. Chem. 274 (43): 30914–8. doi:10.1074/jbc.274.43.30914. PMID10521485.
Hirao K, Hata Y, Deguchi M, et al. (2000). "Association of synapse-associated protein 90/ postsynaptic density-95-associated protein (SAPAP) with neurofilaments". Genes Cells. 5 (3): 203–10. doi:10.1046/j.1365-2443.2000.00318.x. PMID10759891.
Wang P, Zhang Q, Tochio H, et al. (2000). "Formation of a native-like beta-hairpin finger structure of a peptide from the extended PDZ domain of neuronal nitric oxide synthase in aqueous solution". Eur. J. Biochem. 267 (11): 3116–22. doi:10.1046/j.1432-1327.2000.01318.x. PMID10824095.
Hu LA, Chen W, Premont RT, et al. (2002). "G protein-coupled receptor kinase 5 regulates beta 1-adrenergic receptor association with PSD-95". J. Biol. Chem. 277 (2): 1607–13. doi:10.1074/jbc.M107297200. PMID11700307.
Ohtakara K, Nishizawa M, Izawa I, et al. (2003). "Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1". Genes Cells. 7 (11): 1149–60. doi:10.1046/j.1365-2443.2002.00589.x. PMID12390249.
Ying Z, Bingaman W, Najm IM (2004). "Increased numbers of coassembled PSD-95 to NMDA-receptor subunits NR2B and NR1 in human epileptic cortical dysplasia". Epilepsia. 45 (4): 314–21. doi:10.1111/j.0013-9580.2004.37703.x. PMID15030493.