Astrocytoma natural history: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
** Recurrence is more in [[high grade astrocytoma]] compared to [[low grade astrocytoma]].<ref name="pmid8727811">{{cite journal| author=Piepmeier J, Christopher S, Spencer D, Byrne T, Kim J, Knisel JP et al.| title=Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas. | journal=Neurosurgery | year= 1996 | volume= 38 | issue= 5 | pages= 872-8; discussion 878-9 | pmid=8727811 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8727811 }} </ref> | ** Recurrence is more in [[high grade astrocytoma]] compared to [[low grade astrocytoma]].<ref name="pmid8727811">{{cite journal| author=Piepmeier J, Christopher S, Spencer D, Byrne T, Kim J, Knisel JP et al.| title=Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas. | journal=Neurosurgery | year= 1996 | volume= 38 | issue= 5 | pages= 872-8; discussion 878-9 | pmid=8727811 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8727811 }} </ref> | ||
===Complications=== | ===Complications=== | ||
* Astrocytoma being a space occupying [[lesion]] can have following complications depending on the location of the [[tumor]]. | * Astrocytoma being a space occupying [[lesion]] can have following complications depending on the location of the [[tumor]]:<ref name="pmid20026498">{{cite journal |vauthors=Ansell P, Johnston T, Simpson J, Crouch S, Roman E, Picton S |title=Brain tumor signs and symptoms: analysis of primary health care records from the UKCCS |journal=Pediatrics |volume=125 |issue=1 |pages=112–9 |date=January 2010 |pmid=20026498 |doi=10.1542/peds.2009-0254 |url=}}</ref><ref name="pmid16547083">{{cite journal |vauthors=Wilne SH, Ferris RC, Nathwani A, Kennedy CR |title=The presenting features of brain tumours: a review of 200 cases |journal=Arch. Dis. Child. |volume=91 |issue=6 |pages=502–6 |date=June 2006 |pmid=16547083 |pmc=2082784 |doi=10.1136/adc.2005.090266 |url=}}</ref><ref name="pmid17644483">{{cite journal |vauthors=Wilne S, Collier J, Kennedy C, Koller K, Grundy R, Walker D |title=Presentation of childhood CNS tumours: a systematic review and meta-analysis |journal=Lancet Oncol. |volume=8 |issue=8 |pages=685–95 |date=August 2007 |pmid=17644483 |doi=10.1016/S1470-2045(07)70207-3 |url=}}</ref> | ||
:* [[Increased intracranial pressure]] | :* [[Increased intracranial pressure]] | ||
:* Cognitive dysfunction | :* Cognitive dysfunction |
Revision as of 20:33, 10 January 2019
Astrocytoma Microchapters |
Diagnosis |
---|
Treatment |
Case Study |
Astrocytoma natural history On the Web |
American Roentgen Ray Society Images of Astrocytoma natural history |
Risk calculators and risk factors for Astrocytoma natural history |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Fahimeh Shojaei, M.D., Ammu Susheela, M.D. [2]
Overview
If left untreated, eventually 100% of patients with low grade astrocytomas will growth rapidly similar to high grade astrocytoma tumors and 100% of patients with high grade astrocytoma will become symptomatic and deteriorate. Astrocytoma being a space occupying lesion can have following complications depending on the location of the tumor: Increased intracranial pressure, cognitive dysfunction, emotional disturbances, behavioral complications, visual defects and Muscle weakness. Low-grade astrocytomas (grade I [pilocytic] and grade II) have a relatively favorable prognosis, particularly for circumscribed, grade I lesions where complete excision may be possible. High-grade astrocytomas generally carry a poor prognosis in younger patients.
Natural History, Complications, and Prognosis
Natural History
- Low grade astrocytoma:[1][2][3][4]
- The natural history of all low grade astrocytomas are not the same.
- Most of the patients experience 5 to 7 years of symptom stability.
- If left untreated, eventually 100% of patients with low grade astrocytomas will growth rapidly similar to high grade astrocytoma tumors.
- High grade astrocytoma:
- If left untreated, 100% of patients will become symptomatic and deteriorate.
- Recurrence is more in high grade astrocytoma compared to low grade astrocytoma.[5]
Complications
- Astrocytoma being a space occupying lesion can have following complications depending on the location of the tumor:[6][7][8]
- Increased intracranial pressure
- Cognitive dysfunction
- Emotional disturbances
- Behavioral complications
- Visual defects
- Muscle weakness
- Local neurological deficit
Prognosis
- Low-grade astrocytomas (grade I [pilocytic] and grade II) have a relatively favorable prognosis, particularly for circumscribed, grade I lesions where complete excision may be possible.[9][10][11][12]
- Tumor spread, when it occurs, is usually by contiguous extension; dissemination to other CNS sites is uncommon, but does occur.[13][14]
- Although metastasis is uncommon, tumors may be of multi-focal origin, especially when associated with NF1.
- Unfavorable prognostic features for childhood low-grade astrocytomas include the following:[15][16]
- Young age
- Fibrillary histology
- Inability to obtain a complete resection
- In patients with pilocytic astrocytoma, elevated MIB-1 labeling index, a marker of cellular =activity, is associated with shortened PFS.[17][18] A BRAF-KIAA fusion, found in pilocytic tumors, confers a better clinical outcome.
- Children with isolated optic nerve tumors have a better prognosis than those with lesions that involve the chiasm or that extend along the optic pathway.[19][20]; Children with NF1 also have a better prognosis, especially when the tumor is found in asymptomatic patients at the time of screening.
- Grade 2 astrocytomas are defined as being invasive gliomas, meaning that the tumor cells penetrate into the surrounding normal brain. People with oligodendrogliomas (which might share common cells of origin have better prognosis than those with mixed oligoastrocytomas, who in turn have better prognosis than patients with (pure) low-grade astrocytomas. Individuals with grade 2 astrocytoma have a 5-year survival rate of about 34% without treatment and about 70% with radiation therapy. The median survival time is 4 years.[21]
High-grade astrocytomas:
- Biologic markers, such as p53 overexpression and mutation status, may be useful predictors of outcome in patients with high-grade gliomas. MIB-1 labeling index is predictive of outcome in childhood malignant brain tumors.[22] Both histologic classification and proliferative activity evaluation have been shown to be independently associated with survival.[23]
- Although high-grade astrocytomas generally carry a poor prognosis in younger patients, those with anaplastic astrocytomas in whom a gross-total resection is possible may fare better.
- For low grade astrocytomas, removal of the tumor will generally allow functional survival for many years.
- In some reports, the five-year survival has been over 90% with well resected tumors.
- To date, complete resection of high grade astrocytomas is impossible because of the diffuse infiltration of tumor cells.
- Radiation therapy has been shown to prolong survival and is a standard component of treatment of anaplastic astrocytoma.
- Individuals with grade 3 astrocytoma have a median survival time of 18 months without treatment (radiation and chemotherapy).
- Although radiotherapy rarely cures glioblastoma multiforme, studies show that it doubles the median survival of patients, compared to supportive care alone. The prognosis is worst for these grade 4 gliomas. Few patients survive beyond 3 years. Individuals with grade 4 astrocytoma have a median survival time of 17 weeks without treatment, 30 weeks with radiation, and 37 weeks with surgical removal of most of the tumors.[24][25][26]
References
- ↑ Recht LD, Lew R, Smith TW (April 1992). "Suspected low-grade glioma: is deferring treatment safe?". Ann. Neurol. 31 (4): 431–6. doi:10.1002/ana.410310413. PMID 1586143.
- ↑ Olson JD, Riedel E, DeAngelis LM (April 2000). "Long-term outcome of low-grade oligodendroglioma and mixed glioma". Neurology. 54 (7): 1442–8. PMID 10751254.
- ↑ Bauman G, Fisher B, Watling C, Cairncross JG, Macdonald D (December 2009). "Adult supratentorial low-grade glioma: long-term experience at a single institution". Int. J. Radiat. Oncol. Biol. Phys. 75 (5): 1401–7. doi:10.1016/j.ijrobp.2009.01.010. PMID 19395201.
- ↑ Claus EB, Black PM (March 2006). "Survival rates and patterns of care for patients diagnosed with supratentorial low-grade gliomas: data from the SEER program, 1973-2001". Cancer. 106 (6): 1358–63. doi:10.1002/cncr.21733. PMID 16470608.
- ↑ Piepmeier J, Christopher S, Spencer D, Byrne T, Kim J, Knisel JP; et al. (1996). "Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas". Neurosurgery. 38 (5): 872–8, discussion 878-9. PMID 8727811.
- ↑ Ansell P, Johnston T, Simpson J, Crouch S, Roman E, Picton S (January 2010). "Brain tumor signs and symptoms: analysis of primary health care records from the UKCCS". Pediatrics. 125 (1): 112–9. doi:10.1542/peds.2009-0254. PMID 20026498.
- ↑ Wilne SH, Ferris RC, Nathwani A, Kennedy CR (June 2006). "The presenting features of brain tumours: a review of 200 cases". Arch. Dis. Child. 91 (6): 502–6. doi:10.1136/adc.2005.090266. PMC 2082784. PMID 16547083.
- ↑ Wilne S, Collier J, Kennedy C, Koller K, Grundy R, Walker D (August 2007). "Presentation of childhood CNS tumours: a systematic review and meta-analysis". Lancet Oncol. 8 (8): 685–95. doi:10.1016/S1470-2045(07)70207-3. PMID 17644483.
- ↑ Pollack IF (1994). "Brain tumors in children". N Engl J Med. 331 (22): 1500–7. doi:10.1056/NEJM199412013312207. PMID 7969301.
- ↑ Pfister S, Witt O (2009). "Pediatric gliomas". Recent Results Cancer Res. 171: 67–81. doi:10.1007/978-3-540-31206-2_4. PMID 19322538.
- ↑ Fisher PG, Tihan T, Goldthwaite PT, Wharam MD, Carson BS, Weingart JD; et al. (2008). "Outcome analysis of childhood low-grade astrocytomas". Pediatr Blood Cancer. 51 (2): 245–50. doi:10.1002/pbc.21563. PMID 18386785.
- ↑ Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ; et al. (2014). "Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database". Pediatr Blood Cancer. 61 (7): 1173–9. doi:10.1002/pbc.24958. PMID 24482038.
- ↑ von Hornstein S, Kortmann RD, Pietsch T, Emser A, Warmuth-Metz M, Soerensen N; et al. (2011). "Impact of chemotherapy on disseminated low-grade glioma in children and adolescents: report from the HIT-LGG 1996 trial". Pediatr Blood Cancer. 56 (7): 1046–54. doi:10.1002/pbc.23006. PMID 21319282.
- ↑ Mazloom A, Hodges JC, Teh BS, Chintagumpala M, Paulino AC (2012). "Outcome of patients with pilocytic astrocytoma and leptomeningeal dissemination". Int J Radiat Oncol Biol Phys. 84 (2): 350–4. doi:10.1016/j.ijrobp.2011.12.044. PMID 22401918.
- ↑ Stokland T, Liu JF, Ironside JW, Ellison DW, Taylor R, Robinson KJ; et al. (2010). "A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702)". Neuro Oncol. 12 (12): 1257–68. doi:10.1093/neuonc/noq092. PMC 3018938. PMID 20861086.
- ↑ Mirow C, Pietsch T, Berkefeld S, Kwiecien R, Warmuth-Metz M, Falkenstein F; et al. (2014). "Children <1 year show an inferior outcome when treated according to the traditional LGG treatment strategy: a report from the German multicenter trial HIT-LGG 1996 for children with low grade glioma (LGG)". Pediatr Blood Cancer. 61 (3): 457–63. doi:10.1002/pbc.24729. PMID 24039013.
- ↑ Margraf LR, Gargan L, Butt Y, Raghunathan N, Bowers DC (2011). "Proliferative and metabolic markers in incompletely excised pediatric pilocytic astrocytomas--an assessment of 3 new variables in predicting clinical outcome". Neuro Oncol. 13 (7): 767–74. doi:10.1093/neuonc/nor041. PMC 3129272. PMID 21653594.
- ↑ Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M; et al. (2011). "BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma". Clin Cancer Res. 17 (14): 4790–8. doi:10.1158/1078-0432.CCR-11-0034. PMID 21610142.
- ↑ Campbell JW, Pollack IF (1996). "Cerebellar astrocytomas in children". J Neurooncol. 28 (2–3): 223–31. PMID 8832464.
- ↑ Schneider JH, Raffel C, McComb JG (1992). "Benign cerebellar astrocytomas of childhood". Neurosurgery. 30 (1): 58–62, discussion 62-3. PMID 1738456.
- ↑ Due-Tønnessen BJ, Helseth E, Scheie D, Skullerud K, Aamodt G, Lundar T (2002). "Long-term outcome after resection of benign cerebellar astrocytomas in children and young adults (0-19 years): report of 110 consecutive cases". Pediatr Neurosurg. 37 (2): 71–80. doi:65108 Check
|doi=
value (help). PMID 12145515. - ↑ Rood BR, MacDonald TJ (2005). "Pediatric high-grade glioma: molecular genetic clues for innovative therapeutic approaches". J Neurooncol. 75 (3): 267–72. doi:10.1007/s11060-005-6749-5. PMID 16195804 PMID: 16195804 Check
|pmid=
value (help). - ↑ Pollack IF, Hamilton RL, Burnham J, Holmes EJ, Finkelstein SD, Sposto R; et al. (2002). "Impact of proliferation index on outcome in childhood malignant gliomas: results in a multi-institutional cohort". Neurosurgery. 50 (6): 1238–44, discussion 1244-5. PMID 12015841.
- ↑ See SJ, Gilbert MR (October 2004). "Anaplastic astrocytoma: diagnosis, prognosis, and management". Semin. Oncol. 31 (5): 618–34. PMID 15497115.
- ↑ Korshunov A, Golanov A, Sycheva R (July 2002). "Immunohistochemical markers for prognosis of anaplastic astrocytomas". J. Neurooncol. 58 (3): 203–15. PMID 12187956.
- ↑ Burger PC, Vogel FS, Green SB, Strike TA (September 1985). "Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications". Cancer. 56 (5): 1106–11. PMID 2990664.