COX10: Difference between revisions

Jump to navigation Jump to search
m (Bot: HTTP→HTTPS)
 
imported>Narky Blert
(Link to DAB page repaired)
 
Line 1: Line 1:
{{Underlinked|date=May 2016}}
{{Infobox_gene}}
{{Infobox_gene}}
'''Protoheme IX farnesyltransferase, mitochondrial''' is an [[enzyme]] that in humans is encoded by the ''COX10'' [[gene]].<ref name="pmid9177788">{{cite journal | vauthors = Murakami T, Reiter LT, Lupski JR | title = Genomic structure and expression of the human heme A:farnesyltransferase (COX10) gene | journal = Genomics | volume = 42 | issue = 1 | pages = 161–4 |date=Jul 1997 | pmid = 9177788 | pmc =  | doi = 10.1006/geno.1997.4711 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: COX10 COX10 homolog, cytochrome c oxidase assembly protein, heme A: farnesyltransferase (yeast)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1352| accessdate = }}</ref>
'''Protoheme IX farnesyltransferase, mitochondrial''' is an [[enzyme]] that in humans is encoded by the ''COX10'' [[gene]].<ref name="pmid9177788">{{cite journal | vauthors = Murakami T, Reiter LT, Lupski JR | title = Genomic structure and expression of the human heme A:farnesyltransferase (COX10) gene | journal = Genomics | volume = 42 | issue = 1 | pages = 161–4 | date = May 1997 | pmid = 9177788 | pmc =  | doi = 10.1006/geno.1997.4711 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: COX10 COX10 homolog, cytochrome c oxidase assembly protein, heme A: farnesyltransferase (yeast)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1352| access-date = }}{{PD-notice}}</ref> [[Cytochrome c oxidase]] (COX), the terminal component of the [[Electron_transport_chain#In_mitochondria|mitochondrial respiratory chain]], [[Catalysis|catalyzes]] the [[electron transfer]] from [[Redox|reduced]] [[cytochrome c]] to [[Oxygen#Photosynthesis_and_respiration|oxygen]]. This component is a [[Heteromer|heteromeric]] [[protein complex|complex]] consisting of 3 catalytic [[Protein subunit|subunits]] encoded by [[Mitochondrial DNA|mitochondrial genes]] and multiple structural subunits encoded by [[Nuclear DNA|nuclear  genes]]. The mitochondrially-encoded subunits function in electron transfer, and the nuclear-encoded subunits may function in the regulation and assembly of the [[Protein complex|complex]]. This nuclear gene, ''COX10'', encodes [[heme A]]: [[farnesyltransferase]], which is not a structural subunit but required for the [[gene expression|expression]] of functional COX and functions in the maturation of the heme A prosthetic group of COX. A gene [[mutation]], which results in the [[Amino acid replacement|substitution]] of a [[lysine]] for an [[asparagine]] (N204K), is identified to be responsible for cytochrome c oxidase deficiency. In addition, this gene is disrupted in patients with [[Charcot–Marie–Tooth disease|CMT1A]] [[Charcot–Marie–Tooth disease classifications|(Charcot-Marie-Tooth type 1A)]] duplication and with [[Hereditary neuropathy with liability to pressure palsy|HNPP (hereditary neuropathy with liability to pressure palsies)]] [[Deletion (genetics)|deletion]].<ref name="entrez" />


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
== Structure ==
{{PBB_Summary
The ''COX10'' gene is located on the p arm of [[chromosome 17]] in position 12 and spans 139,277 base pairs.<ref name = "entrez"/> The gene produces a 48.9 kDa protein composed of 443 [[amino acids]].<ref name=COPaKB>{{cite journal | vauthors = Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P | title = Integration of cardiac proteome biology and medicine by a specialized knowledgebase | journal = Circulation Research | volume = 113 | issue = 9 | pages = 1043–53 | date = October 2013 | pmid = 23965338 | pmc = 4076475 | doi = 10.1161/CIRCRESAHA.113.301151 }}</ref><ref name="url_COPaKB">{{cite web | url = https://amino.heartproteome.org/web/protein/Q12887 | work = Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) | title = COX10 - Protoheme IX farnesyltransferase, mitochondrial }}</ref> This gene has an unusually long [[Three prime untranslated region|3' untranslated region]] measuring 1426 base pairs, compared to a 1329 base pair [[open reading frame]].<ref>{{cite journal | vauthors = Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW, Mehaye B, Rustin P, Tzagoloff A, Munnich A, Rötig A | title = A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency | journal = Human Molecular Genetics | volume = 9 | issue = 8 | pages = 1245–9 | date = May 2000 | pmid = 10767350 | doi = 10.1093/hmg/9.8.1245 }}</ref> The ''COX10'' gene has 7 [[exon|exons]] totaling 135 kilobases in length.<ref name=":0">{{OMIM|602125|Cytochrome c Oxidase Assembly Factor COX10}}</ref> This protein is predicted to contain 7-9 [[transmembrane domain|transmembrane domains]] [[Protein subcellular localization prediction|localized]] in the [[Inner mitochondrial membrane|mitochondrial inner membrane]].<ref name="entrez" /> There are [[Hydrophile|hydrophilic]] [[Omega loop|loops]] between transmembrane domains II/III and VI/VII.<ref name=":1">{{cite journal | vauthors = Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA | title = Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency | journal = Human Molecular Genetics | volume = 12 | issue = 20 | pages = 2693–702 | date = October 2003 | pmid = 12928484 | doi = 10.1093/hmg/ddg284 }}</ref> This protein is considered a [[Membrane protein|constituent]] of the mitochondrial inner membrane.<ref>{{cite journal | vauthors = Williams SL, Valnot I, Rustin P, Taanman JW | title = Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1 | journal = The Journal of Biological Chemistry | volume = 279 | issue = 9 | pages = 7462–9 | date = February 2004 | pmid = 14607829 | doi = 10.1074/jbc.M309232200 }}</ref>
| section_title =  
| summary_text = Cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. This component is a heteromeric complex consisting of 3 catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear genes. The mitochondrially-encoded subunits function in electron transfer, and the nuclear-encoded subunits may function in the regulation and assembly of the complex. This nuclear gene encodes heme A:farnesyltransferase, which is not a structural subunit but required for the expression of functional COX and functions in the maturation of the heme A prosthetic group of COX. This protein is predicted to contain 7-9 transmembrane domains localized in the mitochondrial inner membrane. A gene mutation, which results in the substitution of a lysine for an asparagine (N204K), is identified to be responsible for cytochrome c oxidase deficiency. In addition, this gene is disrupted in patients with CMT1A (Charcot-Marie-Tooth type 1A) duplication and with HNPP (hereditary neuropathy with liability to pressure palsies) deletion.<ref name="entrez" />
}}


==References==
== Function ==
The protein encoded by ''COX10'' is an assembly factor essential to COX synthesis, participating in the first step of the mitochondrial heme A [[biosynthesis|biosynthetic pathway]]. It catalyzes the [[Prenylation#Protein_prenylation|farnesylation]] of the [[vinyl group]] at position C2 of protoheme ([[heme B]]) and converts it to [[heme O]].<ref name=":0" /><ref name=":1" />
 
== Clinical Significance ==
Mutations in the ''COX10'' gene can result in numerous clinical [[phenotype|phenotypes]], from [[tubulopathy]] and [[leukodystrophy]] to [[Leigh syndrome]] to fatal infantile [[cardiomyopathy]] to a French Canadian form of Leigh Syndrome. A wide variety of symptoms encompassing the entire range of COX deficiency symptoms have been reported, including [[ataxia]], [[hypotonia]], [[Ptosis (eyelid)|ptosis]], [[lactic acidosis]], proximal tubulopathy, [[anemia]], [[myopathy]], [[hypertrophic cardiomyopathy]], [[sensorineural hearing loss]], and leukodystrophy.<ref name=":1" /><ref>{{cite journal | vauthors = Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW, Mehaye B, Rustin P, Tzagoloff A, Munnich A, Rötig A | title = A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency | journal = Human Molecular Genetics | volume = 9 | issue = 8 | pages = 1245–9 | date = May 2000 | pmid = 10767350 | doi = 10.1093/hmg/9.8.1245 }}</ref>
 
In addition, this gene is disrupted in patients with CMT1A (Charcot-Marie-Tooth type 1A) duplication and with HNPP (hereditary neuropathy with liability to pressure palsies) deletion.<ref name="entrez" />
 
== Interactions ==
This protein [[protein-protein interactions|interacts]] with [[FAM136A]].<ref>{{Cite web|url=https://thebiogrid.org/107745|title=COX10 Result Summary {{!}} BioGRID|last= Tyers |first=Mike | name-list-format = vanc |website=thebiogrid.org n|access-date=2018-08-07}}</ref>
 
== References ==
{{reflist}}
{{reflist}}


==External links==
== External links ==
* {{UCSC gene info|COX10}}
* {{UCSC gene info|COX10}}


==Further reading==
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Pitceathly RD, Taanman JW, Rahman S, Meunier B, Sadowski M, Cirak S, Hargreaves I, Land JM, Nanji T, Polke JM, Woodward CE, Sweeney MG, Solanki S, Foley AR, Hurles ME, Stalker J, Blake J, Holton JL, Phadke R, Muntoni F, Reilly MM, Hanna MG | display-authors = 6 | title = COX10 mutations resulting in complex multisystem mitochondrial disease that remains stable into adulthood | journal = JAMA Neurology | volume = 70 | issue = 12 | pages = 1556–61 | date = December 2013 | pmid = 24100867 | doi = 10.1001/jamaneurol.2013.3242 }}
| citations =  
* {{cite journal | vauthors = Glerum DM, Tzagoloff A | title = Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 91 | issue = 18 | pages = 8452–6 | date = August 1994 | pmid = 8078902 | pmc = 44624 | doi = 10.1073/pnas.91.18.8452 }}
*{{cite journal | vauthors=Glerum DM, Tzagoloff A |title=Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 18 |pages= 8452–6 |year= 1994 |pmid= 8078902 |doi=10.1073/pnas.91.18.8452 | pmc=44624  }}
* {{cite journal | vauthors = Reiter LT, Murakami T, Koeuth T, Gibbs RA, Lupski JR | title = The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs | journal = Human Molecular Genetics | volume = 6 | issue = 9 | pages = 1595–603 | date = September 1997 | pmid = 9285799 | doi = 10.1093/hmg/6.9.1595 }}
*{{cite journal | vauthors=Reiter LT, Murakami T, Koeuth T |title=The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs |journal=Hum. Mol. Genet. |volume=6 |issue= 9 |pages= 1595–603 |year= 1998 |pmid= 9285799 |doi=10.1093/hmg/6.9.1595 |display-authors=etal}}
* {{cite journal | vauthors = Kennerson ML, Nassif NT, Dawkins JL, DeKroon RM, Yang JG, Nicholson GA | title = The Charcot-Marie-Tooth binary repeat contains a gene transcribed from the opposite strand of a partially duplicated region of the COX10 gene | journal = Genomics | volume = 46 | issue = 1 | pages = 61–9 | date = November 1997 | pmid = 9403059 | doi = 10.1006/geno.1997.5012 }}
*{{cite journal | vauthors=Kennerson ML, Nassif NT, Dawkins JL |title=The Charcot-Marie-Tooth binary repeat contains a gene transcribed from the opposite strand of a partially duplicated region of the COX10 gene |journal=Genomics |volume=46 |issue= 1 |pages= 61–9 |year= 1998 |pmid= 9403059 |doi= 10.1006/geno.1997.5012 |display-authors=etal}}
* {{cite journal | vauthors = Kennerson ML, Nassif NT, Nicholson GA | title = Genomic structure and physical mapping of C17orf1: a gene associated with the proximal element of the CMT1A-REP binary repeat | journal = Genomics | volume = 53 | issue = 1 | pages = 110–2 | date = October 1998 | pmid = 9787083 | doi = 10.1006/geno.1998.5453 }}
*{{cite journal | vauthors=Kennerson ML, Nassif NT, Nicholson GA |title=Genomic structure and physical mapping of C17orf1: a gene associated with the proximal element of the CMT1A-REP binary repeat |journal=Genomics |volume=53 |issue= 1 |pages= 110–2 |year= 1998 |pmid= 9787083 |doi= 10.1006/geno.1998.5453 }}
* {{cite journal | vauthors = Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW, Mehaye B, Rustin P, Tzagoloff A, Munnich A, Rötig A | title = A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency | journal = Human Molecular Genetics | volume = 9 | issue = 8 | pages = 1245–9 | date = May 2000 | pmid = 10767350 | doi = 10.1093/hmg/9.8.1245 }}
*{{cite journal | vauthors=Valnot I, von Kleist-Retzow JC, Barrientos A |title=A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency |journal=Hum. Mol. Genet. |volume=9 |issue= 8 |pages= 1245–9 |year= 2000 |pmid= 10767350 |doi=10.1093/hmg/9.8.1245 |display-authors=etal}}
* {{cite journal | vauthors = Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, Murri L, Rapoport SI, Solaini G | title = Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer's disease | journal = Neurobiology of Aging | volume = 23 | issue = 3 | pages = 371–6 | year = 2002 | pmid = 11959398 | doi = 10.1016/S0197-4580(01)00314-1 }}
*{{cite journal | vauthors=Bosetti F, Brizzi F, Barogi S |title=Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer's disease |journal=Neurobiol. Aging |volume=23 |issue= 3 |pages= 371–6 |year= 2002 |pmid= 11959398 |doi=10.1016/S0197-4580(01)00314-1 |display-authors=etal}}
* {{cite journal | vauthors = Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA | title = Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency | journal = Human Molecular Genetics | volume = 12 | issue = 20 | pages = 2693–702 | date = October 2003 | pmid = 12928484 | doi = 10.1093/hmg/ddg284 }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899  | pmc=139241 |display-authors=etal}}
* {{cite journal | vauthors = Williams SL, Valnot I, Rustin P, Taanman JW | title = Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1 | journal = The Journal of Biological Chemistry | volume = 279 | issue = 9 | pages = 7462–9 | date = February 2004 | pmid = 14607829 | doi = 10.1074/jbc.M309232200 }}
*{{cite journal | vauthors=Antonicka H, Leary SC, Guercin GH |title=Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency |journal=Hum. Mol. Genet. |volume=12 |issue= 20 |pages= 2693–702 |year= 2004 |pmid= 12928484 |doi= 10.1093/hmg/ddg284 |display-authors=etal}}
* {{cite journal | vauthors = Coenen MJ, van den Heuvel LP, Ugalde C, Ten Brinke M, Nijtmans LG, Trijbels FJ, Beblo S, Maier EM, Muntau AC, Smeitink JA | title = Cytochrome c oxidase biogenesis in a patient with a mutation in COX10 gene | journal = Annals of Neurology | volume = 56 | issue = 4 | pages = 560–4 | date = October 2004 | pmid = 15455402 | doi = 10.1002/ana.20229 }}
*{{cite journal | vauthors=Williams SL, Valnot I, Rustin P, Taanman JW |title=Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1 |journal=J. Biol. Chem. |volume=279 |issue= 9 |pages= 7462–9 |year= 2004 |pmid= 14607829 |doi= 10.1074/jbc.M309232200 }}
* {{cite journal | vauthors = Veluthakal R, Kaur H, Goalstone M, Kowluru A | title = Dominant-negative alpha-subunit of farnesyl- and geranyltransferase inhibits glucose-stimulated, but not KCl-stimulated, insulin secretion in INS 832/13 cells | journal = Diabetes | volume = 56 | issue = 1 | pages = 204–10 | date = January 2007 | pmid = 17192483 | doi = 10.2337/db06-0668 }}
*{{cite journal | vauthors=Coenen MJ, van den Heuvel LP, Ugalde C |title=Cytochrome c oxidase biogenesis in a patient with a mutation in COX10 gene |journal=Ann. Neurol. |volume=56 |issue= 4 |pages= 560–4 |year= 2004 |pmid= 15455402 |doi= 10.1002/ana.20229 |display-authors=etal}}
*{{cite journal | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504  | pmc=528928 |display-authors=etal}}
*{{cite journal  | vauthors=Veluthakal R, Kaur H, Goalstone M, Kowluru A |title=Dominant-negative alpha-subunit of farnesyl- and geranyltransferase inhibits glucose-stimulated, but not KCl-stimulated, insulin secretion in INS 832/13 cells |journal=Diabetes |volume=56 |issue= 1 |pages= 204–10 |year= 2007 |pmid= 17192483 |doi= 10.2337/db06-0668 }}
}}
{{refend}}
{{refend}}
 
{{NLM content}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Portal bar|Mitochondria|Gene Wiki}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
 
{{gene-17-stub}}

Latest revision as of 15:00, 23 September 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Protoheme IX farnesyltransferase, mitochondrial is an enzyme that in humans is encoded by the COX10 gene.[1][2] Cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. This component is a heteromeric complex consisting of 3 catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear genes. The mitochondrially-encoded subunits function in electron transfer, and the nuclear-encoded subunits may function in the regulation and assembly of the complex. This nuclear gene, COX10, encodes heme A: farnesyltransferase, which is not a structural subunit but required for the expression of functional COX and functions in the maturation of the heme A prosthetic group of COX. A gene mutation, which results in the substitution of a lysine for an asparagine (N204K), is identified to be responsible for cytochrome c oxidase deficiency. In addition, this gene is disrupted in patients with CMT1A (Charcot-Marie-Tooth type 1A) duplication and with HNPP (hereditary neuropathy with liability to pressure palsies) deletion.[2]

Structure

The COX10 gene is located on the p arm of chromosome 17 in position 12 and spans 139,277 base pairs.[2] The gene produces a 48.9 kDa protein composed of 443 amino acids.[3][4] This gene has an unusually long 3' untranslated region measuring 1426 base pairs, compared to a 1329 base pair open reading frame.[5] The COX10 gene has 7 exons totaling 135 kilobases in length.[6] This protein is predicted to contain 7-9 transmembrane domains localized in the mitochondrial inner membrane.[2] There are hydrophilic loops between transmembrane domains II/III and VI/VII.[7] This protein is considered a constituent of the mitochondrial inner membrane.[8]

Function

The protein encoded by COX10 is an assembly factor essential to COX synthesis, participating in the first step of the mitochondrial heme A biosynthetic pathway. It catalyzes the farnesylation of the vinyl group at position C2 of protoheme (heme B) and converts it to heme O.[6][7]

Clinical Significance

Mutations in the COX10 gene can result in numerous clinical phenotypes, from tubulopathy and leukodystrophy to Leigh syndrome to fatal infantile cardiomyopathy to a French Canadian form of Leigh Syndrome. A wide variety of symptoms encompassing the entire range of COX deficiency symptoms have been reported, including ataxia, hypotonia, ptosis, lactic acidosis, proximal tubulopathy, anemia, myopathy, hypertrophic cardiomyopathy, sensorineural hearing loss, and leukodystrophy.[7][9]

In addition, this gene is disrupted in patients with CMT1A (Charcot-Marie-Tooth type 1A) duplication and with HNPP (hereditary neuropathy with liability to pressure palsies) deletion.[2]

Interactions

This protein interacts with FAM136A.[10]

References

  1. Murakami T, Reiter LT, Lupski JR (May 1997). "Genomic structure and expression of the human heme A:farnesyltransferase (COX10) gene". Genomics. 42 (1): 161–4. doi:10.1006/geno.1997.4711. PMID 9177788.
  2. 2.0 2.1 2.2 2.3 2.4 "Entrez Gene: COX10 COX10 homolog, cytochrome c oxidase assembly protein, heme A: farnesyltransferase (yeast)". This article incorporates text from this source, which is in the public domain.
  3. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  4. "COX10 - Protoheme IX farnesyltransferase, mitochondrial". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB).
  5. Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW, Mehaye B, Rustin P, Tzagoloff A, Munnich A, Rötig A (May 2000). "A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency". Human Molecular Genetics. 9 (8): 1245–9. doi:10.1093/hmg/9.8.1245. PMID 10767350.
  6. 6.0 6.1 Online Mendelian Inheritance in Man (OMIM) Cytochrome c Oxidase Assembly Factor COX10 -602125
  7. 7.0 7.1 7.2 Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA (October 2003). "Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency". Human Molecular Genetics. 12 (20): 2693–702. doi:10.1093/hmg/ddg284. PMID 12928484.
  8. Williams SL, Valnot I, Rustin P, Taanman JW (February 2004). "Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1". The Journal of Biological Chemistry. 279 (9): 7462–9. doi:10.1074/jbc.M309232200. PMID 14607829.
  9. Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW, Mehaye B, Rustin P, Tzagoloff A, Munnich A, Rötig A (May 2000). "A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency". Human Molecular Genetics. 9 (8): 1245–9. doi:10.1093/hmg/9.8.1245. PMID 10767350.
  10. Tyers M. "COX10 Result Summary | BioGRID". thebiogrid.org n. Retrieved 2018-08-07.

External links

Further reading

  • Pitceathly RD, Taanman JW, Rahman S, Meunier B, Sadowski M, Cirak S, et al. (December 2013). "COX10 mutations resulting in complex multisystem mitochondrial disease that remains stable into adulthood". JAMA Neurology. 70 (12): 1556–61. doi:10.1001/jamaneurol.2013.3242. PMID 24100867.
  • Glerum DM, Tzagoloff A (August 1994). "Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant". Proceedings of the National Academy of Sciences of the United States of America. 91 (18): 8452–6. doi:10.1073/pnas.91.18.8452. PMC 44624. PMID 8078902.
  • Reiter LT, Murakami T, Koeuth T, Gibbs RA, Lupski JR (September 1997). "The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs". Human Molecular Genetics. 6 (9): 1595–603. doi:10.1093/hmg/6.9.1595. PMID 9285799.
  • Kennerson ML, Nassif NT, Dawkins JL, DeKroon RM, Yang JG, Nicholson GA (November 1997). "The Charcot-Marie-Tooth binary repeat contains a gene transcribed from the opposite strand of a partially duplicated region of the COX10 gene". Genomics. 46 (1): 61–9. doi:10.1006/geno.1997.5012. PMID 9403059.
  • Kennerson ML, Nassif NT, Nicholson GA (October 1998). "Genomic structure and physical mapping of C17orf1: a gene associated with the proximal element of the CMT1A-REP binary repeat". Genomics. 53 (1): 110–2. doi:10.1006/geno.1998.5453. PMID 9787083.
  • Valnot I, von Kleist-Retzow JC, Barrientos A, Gorbatyuk M, Taanman JW, Mehaye B, Rustin P, Tzagoloff A, Munnich A, Rötig A (May 2000). "A mutation in the human heme A:farnesyltransferase gene (COX10 ) causes cytochrome c oxidase deficiency". Human Molecular Genetics. 9 (8): 1245–9. doi:10.1093/hmg/9.8.1245. PMID 10767350.
  • Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, Murri L, Rapoport SI, Solaini G (2002). "Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer's disease". Neurobiology of Aging. 23 (3): 371–6. doi:10.1016/S0197-4580(01)00314-1. PMID 11959398.
  • Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA (October 2003). "Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency". Human Molecular Genetics. 12 (20): 2693–702. doi:10.1093/hmg/ddg284. PMID 12928484.
  • Williams SL, Valnot I, Rustin P, Taanman JW (February 2004). "Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1". The Journal of Biological Chemistry. 279 (9): 7462–9. doi:10.1074/jbc.M309232200. PMID 14607829.
  • Coenen MJ, van den Heuvel LP, Ugalde C, Ten Brinke M, Nijtmans LG, Trijbels FJ, Beblo S, Maier EM, Muntau AC, Smeitink JA (October 2004). "Cytochrome c oxidase biogenesis in a patient with a mutation in COX10 gene". Annals of Neurology. 56 (4): 560–4. doi:10.1002/ana.20229. PMID 15455402.
  • Veluthakal R, Kaur H, Goalstone M, Kowluru A (January 2007). "Dominant-negative alpha-subunit of farnesyl- and geranyltransferase inhibits glucose-stimulated, but not KCl-stimulated, insulin secretion in INS 832/13 cells". Diabetes. 56 (1): 204–10. doi:10.2337/db06-0668. PMID 17192483.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.