Macrophage colony-stimulating factor: Difference between revisions

Jump to navigation Jump to search
imported>Carlojoseph14
Added free to read link in citations with OAbot #oabot
 
Line 1: Line 1:
{{Infobox_gene}}
{{Infobox_gene}}


The '''colony stimulating factor 1''' ('''CSF1'''), also known as '''macrophage colony-stimulating factor''' ('''M-CSF'''), is a secreted [[cytokine]] which influences [[hematopoietic stem cells]] to differentiate into [[macrophages]] or other related cell types. Eukaryotic cells also produce M-CSF in order to combat intercellular viral infection. It is one of the three experimentally described [[colony-stimulating factor]]s. M-CSF binds to the [[colony stimulating factor 1 receptor]]. It may also be involved in development of the [[placenta]].<ref name=entrezgene/>
The '''colony stimulating factor 1''' ('''CSF1'''), also known as '''macrophage colony-stimulating factor''' ('''M-CSF'''), is a secreted [[cytokine]] which causes [[hematopoietic stem cells]] to differentiate into [[macrophages]] or other related cell types. Eukaryotic cells also produce M-CSF in order to combat intercellular viral infection. It is one of the three experimentally described [[colony-stimulating factor]]s. M-CSF binds to the [[colony stimulating factor 1 receptor]]. It may also be involved in development of the [[placenta]].<ref name=entrezgene/>


== Structure ==
== Structure ==
M-CSF is a [[cytokine]]. The active form of the protein is found extracellularly as a disulfide-linked homodimer, and is thought to be produced by proteolytic cleavage of membrane-bound precursors.<ref name=entrezgene/>
M-CSF is a [[cytokine]], being a smaller protein involved in cell signaling. The active form of the protein is found extracellularly as a disulfide-linked homodimer, and is thought to be produced by proteolytic cleavage of membrane-bound precursors.<ref name=entrezgene/>


Four transcript variants encoding three different isoforms (a proteoglycan, glycoprotein and cell surface protein)<ref>{{cite journal | vauthors = Jang MH, Herber DM, Jiang X, Nandi S, Dai XM, Zeller G, Stanley ER, Kelley VR | title = Distinct in vivo roles of colony-stimulating factor-1 isoforms in renal inflammation | journal = Journal of Immunology | volume = 177 | issue = 6 | pages = 4055–63 | date = September 2006 | pmid = 16951369 | doi = 10.4049/jimmunol.177.6.4055 }}</ref> have been found for this gene.<ref name=entrezgene>{{cite web | title = Entrez Gene: CSF1 colony stimulating factor 1 (macrophage)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1435 }}</ref>
Four transcript variants encoding three different isoforms (a proteoglycan, glycoprotein and cell surface protein)<ref>{{cite journal | vauthors = Jang MH, Herber DM, Jiang X, Nandi S, Dai XM, Zeller G, Stanley ER, Kelley VR | title = Distinct in vivo roles of colony-stimulating factor-1 isoforms in renal inflammation | journal = Journal of Immunology | volume = 177 | issue = 6 | pages = 4055–63 | date = September 2006 | pmid = 16951369 | doi = 10.4049/jimmunol.177.6.4055 }}</ref> have been found for this gene.<ref name=entrezgene>{{cite web | title = Entrez Gene: CSF1 colony stimulating factor 1 (macrophage)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1435 }}</ref>
Line 13: Line 13:
The role of M-CSF is not only restricted to the monocyte/macrophage cell lineage. By interacting with its membrane receptor ([[CSF1R]] or M-CSF-R encoded by the c-fms proto-oncogene), M-CSF also modulates the proliferation of earlier hematopoietic progenitors and influence numerous physiological processes involved in immunology, metabolism, fertility and pregnancy.<ref name="pmid9262961">{{cite journal | vauthors = Fixe P, Praloran V | title = Macrophage colony-stimulating-factor (M-CSF or CSF-1) and its receptor: structure-function relationships | journal = European Cytokine Network | volume = 8 | issue = 2 | pages = 125–36 | date = June 1997 | pmid = 9262961 | doi =  | url = http://www.jle.com/fr/revues/ecn/e-docs/macrophage_colony_stimulating_factor_m_csf_or_csf_1_and_its_receptor_structure_function_relationships_90247/article.phtml?tab=texte }}</ref>
The role of M-CSF is not only restricted to the monocyte/macrophage cell lineage. By interacting with its membrane receptor ([[CSF1R]] or M-CSF-R encoded by the c-fms proto-oncogene), M-CSF also modulates the proliferation of earlier hematopoietic progenitors and influence numerous physiological processes involved in immunology, metabolism, fertility and pregnancy.<ref name="pmid9262961">{{cite journal | vauthors = Fixe P, Praloran V | title = Macrophage colony-stimulating-factor (M-CSF or CSF-1) and its receptor: structure-function relationships | journal = European Cytokine Network | volume = 8 | issue = 2 | pages = 125–36 | date = June 1997 | pmid = 9262961 | doi =  | url = http://www.jle.com/fr/revues/ecn/e-docs/macrophage_colony_stimulating_factor_m_csf_or_csf_1_and_its_receptor_structure_function_relationships_90247/article.phtml?tab=texte }}</ref>


M-CSF released by [[osteoblast]]s (as a result of [[endocrine]] stimulation by [[parathyroid hormone]]) exerts [[paracrine]] effects on [[osteoclast]]s{{citation needed|date=July 2016}}. M-CSF binds to receptors on [[osteoclast]]s inducing differentiation, and ultimately leading to increased plasma [[calcium]] levels—through the [[resorption]] (breakdown) of bone{{citation needed|date=July 2016}}. Additionally, high levels of CSF-1 expression are observed in the endometrial epithelium of the pregnant uterus as well as high levels of its receptor [[CSF1R]] in the placental [[trophoblast]].  Studies have shown that activation of trophoblasitc CSF1R by local high levels of CSF-1 is essential for normal embryonic implantation and placental development. More recently, it was discovered that CSF-1 and its receptor [[CSF1R]] are implicated in the mammary gland during normal development and [[neoplastic]] growth.<ref name="pmid14709771">{{cite journal | vauthors = Sapi E | title = The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update | journal = Experimental Biology and Medicine | volume = 229 | issue = 1 | pages = 1–11 | date = January 2004 | pmid = 14709771 | doi =  10.1177/153537020422900101}}</ref>
M-CSF released by [[osteoblast]]s (as a result of [[endocrine]] stimulation by [[parathyroid hormone]]) exerts [[paracrine]] effects on [[osteoclast]]s.<ref>{{cite journal|title=Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts|url=https://www.nature.com/articles/s41413-018-0019-6|accessdate=12 July 2018}}</ref> M-CSF binds to receptors on [[osteoclast]]s inducing differentiation, and ultimately leading to increased plasma [[calcium]] levels—through the [[resorption]] (breakdown) of bone{{citation needed|date=July 2016}}. Additionally, high levels of CSF-1 expression are observed in the endometrial epithelium of the pregnant uterus as well as high levels of its receptor [[CSF1R]] in the placental [[trophoblast]].  Studies have shown that activation of trophoblasitc CSF1R by local high levels of CSF-1 is essential for normal embryonic implantation and placental development. More recently, it was discovered that CSF-1 and its receptor [[CSF1R]] are implicated in the mammary gland during normal development and [[neoplastic]] growth.<ref name="pmid14709771">{{cite journal | vauthors = Sapi E | title = The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update | journal = Experimental Biology and Medicine | volume = 229 | issue = 1 | pages = 1–11 | date = January 2004 | pmid = 14709771 | doi =  10.1177/153537020422900101}}</ref>


== Clinical significance ==
== Clinical significance ==
Line 20: Line 20:


M-CSF has been described to play a role in renal pathology including acute kidney injury and chronic renal failure.<ref name="doi = 10.1038/ki.1996.402" /><ref>{{Cite journal|title = Acute kidney injury: CSF-1 signalling is involved in repair following AKI|url = http://www.nature.com/nrneph/journal/v9/n1/full/nrneph.2012.253.html|journal = Nature Reviews Nephrology|date = 2013-01-01|issn = 1759-5061|pages = 2-2|volume = 9|issue = 1|doi = 10.1038/nrneph.2012.253}}</ref> The chronic activation of monocytes can lead to multiple metabolic, hematologic and immunologic abnormalities in patients with chronic renal failure.<ref name="doi = 10.1038/ki.1996.402">{{cite journal | vauthors = Le Meur Y, Fixe P, Aldigier JC, Leroux-Robert C, Praloran V | title = Macrophage colony stimulating factor involvement in uremic patients | journal = Kidney International | volume = 50 | issue = 3 | pages = 1007–12 | date = September 1996 | pmid = 8872977 | doi = 10.1038/ki.1996.402 }}</ref> In the context of acute kidney injury, M-CSF has been implicated in promoting repair following injury,<ref>{{cite journal | vauthors = Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, Yin H, Wong K, Miyazawa T, Chen J, Chang I, Singh A, Harris RC | title = CSF-1 signaling mediates recovery from acute kidney injury | journal = The Journal of Clinical Investigation | volume = 122 | issue = 12 | pages = 4519–32 | date = December 2012 | pmid = 23143303 | pmc = 3533529 | doi = 10.1172/JCI60363 }}</ref> but also been described in an opposing role, driving proliferation of a pro-inflammatory macrophage phenotype.<ref>{{cite journal | vauthors = Cao Q, Wang Y, Zheng D, Sun Y, Wang C, Wang XM, Lee VW, Wang Y, Zheng G, Tan TK, Wang YM, Alexander SI, Harris DC | title = Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo | journal = Kidney International | volume = 85 | issue = 4 | pages = 794–806 | date = April 2014 | pmid = 24048378 | doi = 10.1038/ki.2013.341 }}</ref>
M-CSF has been described to play a role in renal pathology including acute kidney injury and chronic renal failure.<ref name="doi = 10.1038/ki.1996.402" /><ref>{{Cite journal|title = Acute kidney injury: CSF-1 signalling is involved in repair following AKI|url = http://www.nature.com/nrneph/journal/v9/n1/full/nrneph.2012.253.html|journal = Nature Reviews Nephrology|date = 2013-01-01|issn = 1759-5061|pages = 2-2|volume = 9|issue = 1|doi = 10.1038/nrneph.2012.253}}</ref> The chronic activation of monocytes can lead to multiple metabolic, hematologic and immunologic abnormalities in patients with chronic renal failure.<ref name="doi = 10.1038/ki.1996.402">{{cite journal | vauthors = Le Meur Y, Fixe P, Aldigier JC, Leroux-Robert C, Praloran V | title = Macrophage colony stimulating factor involvement in uremic patients | journal = Kidney International | volume = 50 | issue = 3 | pages = 1007–12 | date = September 1996 | pmid = 8872977 | doi = 10.1038/ki.1996.402 }}</ref> In the context of acute kidney injury, M-CSF has been implicated in promoting repair following injury,<ref>{{cite journal | vauthors = Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, Yin H, Wong K, Miyazawa T, Chen J, Chang I, Singh A, Harris RC | title = CSF-1 signaling mediates recovery from acute kidney injury | journal = The Journal of Clinical Investigation | volume = 122 | issue = 12 | pages = 4519–32 | date = December 2012 | pmid = 23143303 | pmc = 3533529 | doi = 10.1172/JCI60363 }}</ref> but also been described in an opposing role, driving proliferation of a pro-inflammatory macrophage phenotype.<ref>{{cite journal | vauthors = Cao Q, Wang Y, Zheng D, Sun Y, Wang C, Wang XM, Lee VW, Wang Y, Zheng G, Tan TK, Wang YM, Alexander SI, Harris DC | title = Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo | journal = Kidney International | volume = 85 | issue = 4 | pages = 794–806 | date = April 2014 | pmid = 24048378 | doi = 10.1038/ki.2013.341 }}</ref>
==As a drug target==
[[PD-0360324]] and [[MCS110]] are CSF1 inhibitors in clinical trials for some cancers.<ref>[https://www.onclive.com/publications/oncology-live/2018/vol-19-no-7/interest-builds-in-csf1r-for-targeting-tumor-microenvironment?p=2 ''Interest Builds in CSF1R for Targeting Tumor Microenvironment'']</ref> See also [[CSF1R inhibitor]]s.


== Interactions ==
== Interactions ==
Line 37: Line 40:
* {{cite journal | vauthors = Sweet MJ, Hume DA | title = CSF-1 as a regulator of macrophage activation and immune responses | journal = Archivum Immunologiae Et Therapiae Experimentalis | volume = 51 | issue = 3 | pages = 169–77 | year = 2004 | pmid = 12894871 | doi =  }}
* {{cite journal | vauthors = Sweet MJ, Hume DA | title = CSF-1 as a regulator of macrophage activation and immune responses | journal = Archivum Immunologiae Et Therapiae Experimentalis | volume = 51 | issue = 3 | pages = 169–77 | year = 2004 | pmid = 12894871 | doi =  }}
* {{cite journal | vauthors = Mroczko B, Szmitkowski M | title = Hematopoietic cytokines as tumor markers | journal = Clinical Chemistry and Laboratory Medicine | volume = 42 | issue = 12 | pages = 1347–54 | year = 2005 | pmid = 15576295 | doi = 10.1515/CCLM.2004.253 }}
* {{cite journal | vauthors = Mroczko B, Szmitkowski M | title = Hematopoietic cytokines as tumor markers | journal = Clinical Chemistry and Laboratory Medicine | volume = 42 | issue = 12 | pages = 1347–54 | year = 2005 | pmid = 15576295 | doi = 10.1515/CCLM.2004.253 }}
* {{cite journal | vauthors = Pandit J, Bohm A, Jancarik J, Halenbeck R, Koths K, Kim SH | title = Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor | journal = Science | volume = 258 | issue = 5086 | pages = 1358–62 | date = November 1992 | pmid = 1455231 | doi = 10.1126/science.1455231 }}
* {{cite journal | vauthors = Pandit J, Bohm A, Jancarik J, Halenbeck R, Koths K, Kim SH | title = Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor | journal = Science | volume = 258 | issue = 5086 | pages = 1358–62 | date = November 1992 | pmid = 1455231 | doi = 10.1126/science.1455231 | url = https://zenodo.org/record/1230962/files/article.pdf }}
* {{cite journal | vauthors = Suzu S, Ohtsuki T, Yanai N, Takatsu Z, Kawashima T, Takaku F, Nagata N, Motoyoshi K | title = Identification of a high molecular weight macrophage colony-stimulating factor as a glycosaminoglycan-containing species | journal = The Journal of Biological Chemistry | volume = 267 | issue = 7 | pages = 4345–8 | date = March 1992 | pmid = 1531650 | doi =  }}
* {{cite journal | vauthors = Suzu S, Ohtsuki T, Yanai N, Takatsu Z, Kawashima T, Takaku F, Nagata N, Motoyoshi K | title = Identification of a high molecular weight macrophage colony-stimulating factor as a glycosaminoglycan-containing species | journal = The Journal of Biological Chemistry | volume = 267 | issue = 7 | pages = 4345–8 | date = March 1992 | pmid = 1531650 | doi =  }}
* {{cite journal | vauthors = Saltman DL, Dolganov GM, Hinton LM, Lovett M | title = Reassignment of the human macrophage colony stimulating factor gene to chromosome 1p13-21 | journal = Biochemical and Biophysical Research Communications | volume = 182 | issue = 3 | pages = 1139–43 | date = February 1992 | pmid = 1540160 | doi = 10.1016/0006-291X(92)91850-P }}
* {{cite journal | vauthors = Saltman DL, Dolganov GM, Hinton LM, Lovett M | title = Reassignment of the human macrophage colony stimulating factor gene to chromosome 1p13-21 | journal = Biochemical and Biophysical Research Communications | volume = 182 | issue = 3 | pages = 1139–43 | date = February 1992 | pmid = 1540160 | doi = 10.1016/0006-291X(92)91850-P }}

Latest revision as of 18:42, 25 October 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

The colony stimulating factor 1 (CSF1), also known as macrophage colony-stimulating factor (M-CSF), is a secreted cytokine which causes hematopoietic stem cells to differentiate into macrophages or other related cell types. Eukaryotic cells also produce M-CSF in order to combat intercellular viral infection. It is one of the three experimentally described colony-stimulating factors. M-CSF binds to the colony stimulating factor 1 receptor. It may also be involved in development of the placenta.[1]

Structure

M-CSF is a cytokine, being a smaller protein involved in cell signaling. The active form of the protein is found extracellularly as a disulfide-linked homodimer, and is thought to be produced by proteolytic cleavage of membrane-bound precursors.[1]

Four transcript variants encoding three different isoforms (a proteoglycan, glycoprotein and cell surface protein)[2] have been found for this gene.[1]

Function

M-CSF (or CSF-1) is a hematopoietic growth factor that is involved in the proliferation, differentiation, and survival of monocytes, macrophages, and bone marrow progenitor cells.[3] M-CSF affects macrophages and monocytes in several ways, including stimulating increased phagocytic and chemotactic activity, and increased tumour cell cytotoxicity.[4] The role of M-CSF is not only restricted to the monocyte/macrophage cell lineage. By interacting with its membrane receptor (CSF1R or M-CSF-R encoded by the c-fms proto-oncogene), M-CSF also modulates the proliferation of earlier hematopoietic progenitors and influence numerous physiological processes involved in immunology, metabolism, fertility and pregnancy.[5]

M-CSF released by osteoblasts (as a result of endocrine stimulation by parathyroid hormone) exerts paracrine effects on osteoclasts.[6] M-CSF binds to receptors on osteoclasts inducing differentiation, and ultimately leading to increased plasma calcium levels—through the resorption (breakdown) of bone[citation needed]. Additionally, high levels of CSF-1 expression are observed in the endometrial epithelium of the pregnant uterus as well as high levels of its receptor CSF1R in the placental trophoblast. Studies have shown that activation of trophoblasitc CSF1R by local high levels of CSF-1 is essential for normal embryonic implantation and placental development. More recently, it was discovered that CSF-1 and its receptor CSF1R are implicated in the mammary gland during normal development and neoplastic growth.[7]

Clinical significance

Locally produced M-CSF in the vessel wall contributes to the development and progression of atherosclerosis.[8]

M-CSF has been described to play a role in renal pathology including acute kidney injury and chronic renal failure.[9][10] The chronic activation of monocytes can lead to multiple metabolic, hematologic and immunologic abnormalities in patients with chronic renal failure.[9] In the context of acute kidney injury, M-CSF has been implicated in promoting repair following injury,[11] but also been described in an opposing role, driving proliferation of a pro-inflammatory macrophage phenotype.[12]

As a drug target

PD-0360324 and MCS110 are CSF1 inhibitors in clinical trials for some cancers.[13] See also CSF1R inhibitors.

Interactions

Macrophage colony-stimulating factor has been shown to interact with PIK3R2.[14]

References

  1. 1.0 1.1 1.2 "Entrez Gene: CSF1 colony stimulating factor 1 (macrophage)".
  2. Jang MH, Herber DM, Jiang X, Nandi S, Dai XM, Zeller G, Stanley ER, Kelley VR (September 2006). "Distinct in vivo roles of colony-stimulating factor-1 isoforms in renal inflammation". Journal of Immunology. 177 (6): 4055–63. doi:10.4049/jimmunol.177.6.4055. PMID 16951369.
  3. Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG (January 1997). "Biology and action of colony--stimulating factor-1". Molecular Reproduction and Development. 46 (1): 4–10. doi:10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-V. PMID 8981357.
  4. Nemunaitis J (April 1993). "Macrophage function activating cytokines: potential clinical application". Critical Reviews in Oncology/Hematology. 14 (2): 153–71. doi:10.1016/1040-8428(93)90022-V. PMID 8357512.
  5. Fixe P, Praloran V (June 1997). "Macrophage colony-stimulating-factor (M-CSF or CSF-1) and its receptor: structure-function relationships". European Cytokine Network. 8 (2): 125–36. PMID 9262961.
  6. "Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts". Retrieved 12 July 2018.
  7. Sapi E (January 2004). "The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update". Experimental Biology and Medicine. 229 (1): 1–11. doi:10.1177/153537020422900101. PMID 14709771.
  8. Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M, Wang XP, Loussararian A, Clinton S, Libby P, Lusis A (June 1998). "Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice". The Journal of Clinical Investigation. 101 (12): 2702–10. doi:10.1172/JCI119891. PMC 508861. PMID 9637704.
  9. 9.0 9.1 Le Meur Y, Fixe P, Aldigier JC, Leroux-Robert C, Praloran V (September 1996). "Macrophage colony stimulating factor involvement in uremic patients". Kidney International. 50 (3): 1007–12. doi:10.1038/ki.1996.402. PMID 8872977.
  10. "Acute kidney injury: CSF-1 signalling is involved in repair following AKI". Nature Reviews Nephrology. 9 (1): 2–2. 2013-01-01. doi:10.1038/nrneph.2012.253. ISSN 1759-5061.
  11. Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, Yin H, Wong K, Miyazawa T, Chen J, Chang I, Singh A, Harris RC (December 2012). "CSF-1 signaling mediates recovery from acute kidney injury". The Journal of Clinical Investigation. 122 (12): 4519–32. doi:10.1172/JCI60363. PMC 3533529. PMID 23143303.
  12. Cao Q, Wang Y, Zheng D, Sun Y, Wang C, Wang XM, Lee VW, Wang Y, Zheng G, Tan TK, Wang YM, Alexander SI, Harris DC (April 2014). "Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo". Kidney International. 85 (4): 794–806. doi:10.1038/ki.2013.341. PMID 24048378.
  13. Interest Builds in CSF1R for Targeting Tumor Microenvironment
  14. Gout I, Dhand R, Panayotou G, Fry MJ, Hiles I, Otsu M, Waterfield MD (December 1992). "Expression and characterization of the p85 subunit of the phosphatidylinositol 3-kinase complex and a related p85 beta protein by using the baculovirus expression system". The Biochemical Journal. 288 (2): 395–405. doi:10.1042/bj2880395. PMC 1132024. PMID 1334406.

Further reading

External links