ANGPTL3: Difference between revisions

Jump to navigation Jump to search
imported>Benbest
Function: what the citation says
 
Line 6: Line 6:
The protein encoded by this gene is a member of the [[angiopoietin]]-like family of secreted factors. It is expressed predominantly in the liver, and has the characteristic structure of angiopoietins, consisting of a [[signal peptide]], [[N-terminus|N-terminal]] [[coiled-coil]] domain, and the [[C-terminus|C-terminal]] [[fibrinogen]] (FBN)-like domain. The FBN-like domain in angiopoietin-like 3 protein was shown to bind [[Alpha-v beta-3|alpha-5/beta-3 integrins]], and this binding induced endothelial [[cell adhesion]] and [[cell migration|migration]]. This protein may also play a role in the regulation of [[angiogenesis]].<ref name="entrez"/>
The protein encoded by this gene is a member of the [[angiopoietin]]-like family of secreted factors. It is expressed predominantly in the liver, and has the characteristic structure of angiopoietins, consisting of a [[signal peptide]], [[N-terminus|N-terminal]] [[coiled-coil]] domain, and the [[C-terminus|C-terminal]] [[fibrinogen]] (FBN)-like domain. The FBN-like domain in angiopoietin-like 3 protein was shown to bind [[Alpha-v beta-3|alpha-5/beta-3 integrins]], and this binding induced endothelial [[cell adhesion]] and [[cell migration|migration]]. This protein may also play a role in the regulation of [[angiogenesis]].<ref name="entrez"/>


Angptl3 also acts as dual inhibitor of [[lipoprotein lipase]] (LPL) and [[endothelial lipase]] (EL), and increases plasma triglyceride and HDL cholesterol in rodents. ANGPTL3 inhibits endothelial lipase to catalyze HDL-phospholipid and increase HDL-PL levels. Circulating PL-rich HDL particles have high cholesterol efflux abilities.
Angptl3 also acts as dual inhibitor of [[lipoprotein lipase]] (LPL) and [[endothelial lipase]] (EL),<ref name="pmid26754661">{{cite journal | vauthors=Tikka A, Jauhiainen M | title=The role of ANGPTL3 in controlling lipoprotein metabolism | journal= [[Endocrine (journal)|Endocrine]] | volume=52 | issue=2 | pages=187–193 | year=2016 |  PMC =4824806  | PMID = 26754661 }}</ref> thereby increasing plasma triglyceride, LDL cholesterol and HDL cholesterol in mice and humans.<ref name="pmid26754661" />
 
ANGPTL3 inhibits endothelial lipase [[hydrolysis]] of HDL-phospholipid (PL), thereby increasing HDL-PL levels.{{citation needed|date=March 2018}} Circulating PL-rich HDL particles have high cholesterol efflux abilities.{{citation needed|date=March 2018}}


Angptl3 plays a major role in promoting uptake of circulating triglycerides into white adipose tissue in the fed state,<ref name="pmid26305978| 87">{{cite journal | vauthors = Wang Y, McNutt MC, Banfi S, Levin MG, Holland WL, Gusarova V, Gromada J, Cohen JC, Hobbs HH | title = Hepatic ANGPTL3 regulates adipose tissue energy homeostasis | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 112 | issue = 37 | pages = 11630–5 | date = Sep 2015 | pmid = 26305978 | doi = 10.1073/pnas.1515374112 | pmc=4577179}}</ref> likely through activation by Angptl8, a feeding-induced hepatokine,<ref name="pmid22809513">{{cite journal | vauthors = Zhang R | title = Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels | journal = Biochemical and Biophysical Research Communications | volume = 424 | issue = 4 | pages = 786–92 | date = Aug 2012 | pmid = 22809513 | doi = 10.1016/j.bbrc.2012.07.038 }}</ref><ref name="pmid22569073">{{cite journal | vauthors = Ren G, Kim JY, Smas CM | title = Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism | journal = American Journal of Physiology. Endocrinology and Metabolism | volume = 303 | issue = 3 | pages = E334-51 | date = Aug 2012 | pmid = 22569073 | doi = 10.1152/ajpendo.00084.2012 | pmc=3423120}}</ref> to inhibit postprandial LPL activity in cardiac and skeletal muscles,<ref name="pmid26687026">{{cite journal | vauthors = Fu Z, Abou-Samra AB, Zhang R | title = A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase | journal = Scientific Reports | volume = 5 | pages = 18502 | date = December 2015 | pmid = 26687026 | doi = 10.1038/srep18502 | url = http://www.nature.com/articles/srep18502 | pmc=4685196}}</ref> as suggested by the ANGPTL3-4-8 model.<ref name="PMID 27053679">{{cite journal | vauthors = Zhang R | title = The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. | journal = Open Biology | volume = 6 | pages = 150272 | date = April 2016 | pmid = 27053679 | doi = 10.1098/rsob.150272 | url = http://rsob.royalsocietypublishing.org/content/6/4/150272.long | pmc=4852456}}</ref>
Angptl3 plays a major role in promoting uptake of circulating triglycerides into white adipose tissue in the fed state,<ref name="pmid26305978| 87">{{cite journal | vauthors = Wang Y, McNutt MC, Banfi S, Levin MG, Holland WL, Gusarova V, Gromada J, Cohen JC, Hobbs HH | title = Hepatic ANGPTL3 regulates adipose tissue energy homeostasis | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 112 | issue = 37 | pages = 11630–5 | date = Sep 2015 | pmid = 26305978 | doi = 10.1073/pnas.1515374112 | pmc=4577179}}</ref> likely through activation by Angptl8, a feeding-induced hepatokine,<ref name="pmid22809513">{{cite journal | vauthors = Zhang R | title = Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels | journal = Biochemical and Biophysical Research Communications | volume = 424 | issue = 4 | pages = 786–92 | date = Aug 2012 | pmid = 22809513 | doi = 10.1016/j.bbrc.2012.07.038 }}</ref><ref name="pmid22569073">{{cite journal | vauthors = Ren G, Kim JY, Smas CM | title = Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism | journal = American Journal of Physiology. Endocrinology and Metabolism | volume = 303 | issue = 3 | pages = E334-51 | date = Aug 2012 | pmid = 22569073 | doi = 10.1152/ajpendo.00084.2012 | pmc=3423120}}</ref> to inhibit postprandial LPL activity in cardiac and skeletal muscles,<ref name="pmid26687026">{{cite journal | vauthors = Fu Z, Abou-Samra AB, Zhang R | title = A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase | journal = Scientific Reports | volume = 5 | pages = 18502 | date = December 2015 | pmid = 26687026 | doi = 10.1038/srep18502 | url = http://www.nature.com/articles/srep18502 | pmc=4685196}}</ref> as suggested by the ANGPTL3-4-8 model.<ref name="PMID 27053679">{{cite journal | vauthors = Zhang R | title = The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. | journal = Open Biology | volume = 6 | pages = 150272 | date = April 2016 | pmid = 27053679 | doi = 10.1098/rsob.150272 | url = http://rsob.royalsocietypublishing.org/content/6/4/150272.long | pmc=4852456}}</ref>

Latest revision as of 19:49, 12 June 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Angiopoietin-like 3, also known as ANGPTL3, is a protein that in humans is encoded by the ANGPTL3 gene.[1][2]

Function

The protein encoded by this gene is a member of the angiopoietin-like family of secreted factors. It is expressed predominantly in the liver, and has the characteristic structure of angiopoietins, consisting of a signal peptide, N-terminal coiled-coil domain, and the C-terminal fibrinogen (FBN)-like domain. The FBN-like domain in angiopoietin-like 3 protein was shown to bind alpha-5/beta-3 integrins, and this binding induced endothelial cell adhesion and migration. This protein may also play a role in the regulation of angiogenesis.[1]

Angptl3 also acts as dual inhibitor of lipoprotein lipase (LPL) and endothelial lipase (EL),[3] thereby increasing plasma triglyceride, LDL cholesterol and HDL cholesterol in mice and humans.[3]

ANGPTL3 inhibits endothelial lipase hydrolysis of HDL-phospholipid (PL), thereby increasing HDL-PL levels.[citation needed] Circulating PL-rich HDL particles have high cholesterol efflux abilities.[citation needed]

Angptl3 plays a major role in promoting uptake of circulating triglycerides into white adipose tissue in the fed state,[4] likely through activation by Angptl8, a feeding-induced hepatokine,[5][6] to inhibit postprandial LPL activity in cardiac and skeletal muscles,[7] as suggested by the ANGPTL3-4-8 model.[8]

Clinical significance

In human, ANGPTL3 is a determinant factor of HDL level and positively correlates with plasma HDL cholesterol.

In humans with genetic loss-of-function variants in one copy of ANGPTL3, the serum LDL-C levels are reduced. In those with loss-of-function variants in both copies of ANGPTL3, low LDL-C, low HDL-C, and low triglycerides are seen ("familial combined hypolipidemia").[9]

References

  1. 1.0 1.1 "Entrez Gene: ANGPTL3 angiopoietin-like 3".
  2. Conklin D, Gilbertson D, Taft DW, Maurer MF, Whitmore TE, Smith DL, Walker KM, Chen LH, Wattler S, Nehls M, Lewis KB (December 1999). "Identification of a mammalian angiopoietin-related protein expressed specifically in liver". Genomics. 62 (3): 477–82. doi:10.1006/geno.1999.6041. PMID 10644446.
  3. 3.0 3.1 Tikka A, Jauhiainen M (2016). "The role of ANGPTL3 in controlling lipoprotein metabolism". Endocrine. 52 (2): 187–193. PMC 4824806. PMID 26754661.
  4. Wang Y, McNutt MC, Banfi S, Levin MG, Holland WL, Gusarova V, Gromada J, Cohen JC, Hobbs HH (Sep 2015). "Hepatic ANGPTL3 regulates adipose tissue energy homeostasis". Proceedings of the National Academy of Sciences of the United States of America. 112 (37): 11630–5. doi:10.1073/pnas.1515374112. PMC 4577179. PMID 26305978.
  5. Zhang R (Aug 2012). "Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels". Biochemical and Biophysical Research Communications. 424 (4): 786–92. doi:10.1016/j.bbrc.2012.07.038. PMID 22809513.
  6. Ren G, Kim JY, Smas CM (Aug 2012). "Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism". American Journal of Physiology. Endocrinology and Metabolism. 303 (3): E334–51. doi:10.1152/ajpendo.00084.2012. PMC 3423120. PMID 22569073.
  7. Fu Z, Abou-Samra AB, Zhang R (December 2015). "A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase". Scientific Reports. 5: 18502. doi:10.1038/srep18502. PMC 4685196. PMID 26687026.
  8. Zhang R (April 2016). "The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking". Open Biology. 6: 150272. doi:10.1098/rsob.150272. PMC 4852456. PMID 27053679.
  9. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, Garimella KV, Fisher S, Abreu J, et al. (2010). "Exome Sequencing,ANGPTL3Mutations, and Familial Combined Hypolipidemia". New England Journal of Medicine. 363 (23): 2220–2227. doi:10.1056/NEJMoa1002926. PMC 3008575. PMID 20942659.

External links

Further reading