Transmembrane protein 255A: Difference between revisions
m Bot: removing misplaced special no-break space character and minor changes |
imported>Citation bot m Alter: template type. Add: date. Removed parameters. You can use this bot yourself. Report bugs here. | User-activated; Category:CS1 maint: Explicit use of et al.. |
||
Line 1: | Line 1: | ||
{{#invoke:Infobox_gene|getTemplateData|QID=Q18041486}} | {{#invoke:Infobox_gene|getTemplateData|QID=Q18041486}} | ||
'''Transmembrane protein 255A'''<ref>{{ | '''Transmembrane protein 255A'''<ref>{{Cite journal|title=Homo sapiens transmembrane protein 255A (TMEM255A), transcript variant - Nucleotide - NCBI|url=https://www.ncbi.nlm.nih.gov/nuccore/NM_017938.3|website=www.ncbi.nlm.nih.gov|date=2018-06-24}}</ref> is a [[protein]] that is encoded by the '''TMEM255A''' [[gene]].<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/gene/55026|title=TMEM255A Transmembrane Protein 255A [Homo sapiens]|last=NCBI|first=National Center for Biotechnology Information|website=NCBI (National Center for Biotechnology Information)|access-date=}}</ref> TMEM255A is often referred to as '''family with sequence similarity 70, member A''' ('''FAM70A''').<ref>{{Cite web|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=TMEM255A|title=TMEM255A Gene - GeneCards {{!}} T255A Protein {{!}} T255A Antibody|last=Database|first=GeneCards Human Gene|website=www.genecards.org|archive-url=https://web.archive.org/web/20130823032817/http://genecards.org/cgi-bin/carddisp.pl?gene=TMEM255A|archive-date=2013-08-23|dead-url=yes}}</ref> The TMEM255A protein is transmembrane and is predicted to be located the [[nuclear envelope]] of [[eukaryote]] organisms.<ref>{{Cite web|url=http://www.proteinatlas.org/search/TMEM255A|title=Search: TMEM255A - The Human Protein Atlas|website=www.proteinatlas.org|access-date=2017-04-26}}</ref> | ||
== | == Gene == | ||
=== mRNA == | [[File:Chromosome X- location of TMEM255A.png|thumb|223x223px|Human X chromosome with the location of TMEM255A marked at q24.<ref>[https://www.genecards.org/cgi-bin/carddisp.pl?gene=TMEM255A&keywords=TMEM255A<nowiki>] (2017-05-06).</nowiki> Image: GeneCards, 2017]</ref>]] | ||
There are three variants of the transcript seen, where [[Protein isoform|isoform]] 1 is the longest. The 5’- and 3’- UTRs of the mRNA spans 227 and 2207 base pairs, respectively, and are predicted to contain several [[ | The TMEM25A gene (often referred to as Family with Sequence Similarity 70 Member A; FAM70A) is located on [[X chromosome|Xq24]], spanning 60,555 [[base pair]]s.<ref>{{Cite web|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=TMEM255A|title=TMEM255A|last=|first=|date=April 25, 2017|website=www.genecards.org|archive-url=https://web.archive.org/web/20130823032817/http://genecards.org/cgi-bin/carddisp.pl?gene=TMEM255A|archive-date=2013-08-23|dead-url=yes|access-date=}}</ref> TMEM255A is flanked by the genes ATPase Na+/K+ transporting family member beta 4 ([[ATP1B4]]) and NF<sub>K</sub>B activating protein pseudogene 1 ([[NKAPP1]]).<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/gene?LinkName=gene_gene_neighbors&from_uid=55026|title=Gene neighbors for Gene (Select 55026) - Gene - NCBI|website=www.ncbi.nlm.nih.gov|access-date=2017-04-26}}</ref> | ||
== mRNA == | |||
There are three variants of the transcript seen, where [[Protein isoform|isoform]] 1 is the longest. The 5’- and 3’- UTRs of the mRNA spans 227 and 2207 base pairs, respectively, and are predicted to contain several [[stem-loop]]s.<ref>{{Cite web|url=http://unafold.rna.albany.edu/?q=mfold|title=The Mfold Web Server|last=|first=|date=|website=unafold.rna.albany.edu|language=EN|access-date=2017-04-25}}</ref> The [[Messenger RNA|mRNA]] is 3512 base pairs long and the gene consists of 9 exons.<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/gene/55026|title=TMEM255A transmembrane protein 255A [Homo sapiens (human)] - Gene - NCBI|last=National Center for Biotechnology Information|first=NCBI|date=|website=www.ncbi.nlm.nih.gov|access-date=2017-04-26}}</ref> | |||
[[File:4Q6 Membrane figure Annotated UPDATED.png|thumb|A prediction of TMEM255A's location in the nuclear membrane of Eukaryotic cells.<ref>Image: Kristin H. Aaen, 2017.</ref>]] | [[File:4Q6 Membrane figure Annotated UPDATED.png|thumb|A prediction of TMEM255A's location in the nuclear membrane of Eukaryotic cells.<ref>Image: Kristin H. Aaen, 2017.</ref>]] | ||
== Protein == | |||
The longest protein encoded for is isoform 1, which spans 349 amino acids, and is predicted to have a molecular weight at 38 kDa and [[isoelectric point]] at pH 7.89.<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/gene/55026|title=Transmembrane Domain 255A, Homo sapiens|last=National Center for Biotechnology Information|first=NCBI Gene|date=2017-04-02|website=NCBI Gene | |||
The longest protein encoded for is isoform 1, which spans 349 amino acids, and is predicted to have a molecular weight at 38 kDa and [[isoelectric point]] at pH 7.89.<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/gene/55026|title=Transmembrane Domain 255A, Homo sapiens|last=National Center for Biotechnology Information|first=NCBI Gene|date=2017-04-02|website=NCBI Gene|access-date=}}</ref><ref>{{Cite journal|last=Subramaniam|first=S.|date=1998|title=The Biology Workbench: a seamless database and analysis environment for the biologist|journal=Proteins|volume=2|pages=1–2}}</ref><ref>{{Cite web|url=http://www.embl-heidelberg.de/cgi/pi-wrapper.pl|title=Gateway to Isoelectric Point Service|last=Toldo|first=Luca|date=April 25, 2017|website=|archive-url=https://web.archive.org/web/20081026062821/http://www.embl-heidelberg.de/cgi/pi-wrapper.pl|archive-date=2008-10-26|dead-url=yes|df=}}</ref> Compared to the average [[vertebrate]] protein, TMEM255A is rich in aspartic acid, isoleucine, proline and tyrosine, and relatively poor in glutamic acid and lysine.<ref>{{Cite journal|last=Dyer|first=K. F.|date=1971|title=The quiet revolution: A new synthesis of biological knowledge|url=http://www.tiem.utk.edu/~gross/bioed/webmodules/aminoacid.htm|journal=Journal of Biological Education|volume=5|pages=15–24}}</ref> No charge clusters have been found in this protein. | |||
The protein is predicted to be post-translationally modified by [[Protein phosphorylation|phosphorylation]] and [[glycosylation]].<ref>{{Cite journal|last=Blom|first=N.|date=Summer 2002|title=Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence|url=|journal=Proteomics|volume=6|pages=1633–49}}</ref> The protein is predicted to have four transmembrane domains in the nuclear membrane. The structure of the protein is predicted to be helical in the transmembrane domains.<ref>{{Cite journal|last=Yang|first=J.|date=2015|title=The I-TASSER Suite: Protein structure and function prediction|journal=Nature Methods|volume=12|issue=1|pages=7–8|pmid=25549265|pmc=4428668|doi=10.1038/nmeth.3213}}</ref><ref>{{Cite journal|last=Roy|first=A.|date=2010|title=I-TASSER: a unified platform for automated protein structure and function prediction|journal=Nature Protocols|volume=5|pages=725–738}}</ref><ref>{{Cite journal|last=Zhang|first=Y.|date=2008|title=I-TASSER server for protein 3D structure prediction|url=|journal=BMC Bioinformatics|volume=9|pages=40|pmid=18215316|pmc=2245901|doi=10.1186/1471-2105-9-40}}</ref> [[Disulfide bonds]] are predicted to be found in the region in between transmembrane domains 3 and 4, which indicates that this particular region is located in the nucleoplasm.<ref>{{Cite journal|last=Ferre & Clote|date=2006|title=DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification | The protein is predicted to be post-translationally modified by [[Protein phosphorylation|phosphorylation]] and [[glycosylation]].<ref>{{Cite journal|last=Blom|first=N.|date=Summer 2002|title=Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence|url=|journal=Proteomics|volume=6|pages=1633–49}}</ref> The protein is predicted to have four transmembrane domains in the nuclear membrane. The structure of the protein is predicted to be helical in the transmembrane domains.<ref>{{Cite journal|last=Yang|first=J.|date=2015|title=The I-TASSER Suite: Protein structure and function prediction|journal=Nature Methods|volume=12|issue=1|pages=7–8|pmid=25549265|pmc=4428668|doi=10.1038/nmeth.3213}}</ref><ref>{{Cite journal|last=Roy|first=A.|date=2010|title=I-TASSER: a unified platform for automated protein structure and function prediction|journal=Nature Protocols|volume=5|pages=725–738}}</ref><ref>{{Cite journal|last=Zhang|first=Y.|date=2008|title=I-TASSER server for protein 3D structure prediction|url=|journal=BMC Bioinformatics|volume=9|pages=40|pmid=18215316|pmc=2245901|doi=10.1186/1471-2105-9-40}}</ref> [[Disulfide bonds]] are predicted to be found in the region in between transmembrane domains 3 and 4, which indicates that this particular region is located in the nucleoplasm.<ref>{{Cite journal|last=Ferre & Clote|date=2006|title=DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification|journal=Nucleic Acids Res. - Web Servers}}</ref><ref>{{Cite journal|last=Ferre & Clote|date=Summer 2005|title=DiANNA: a web server for disulfide connectivity prediction|journal=Nucleic Acids Res.|volume=33(Web Server Issue)|pages=W230–2}}</ref><ref>{{Cite journal|last=Ferre & Clote|date=Summer 2005|title=Disulfide connectivity prediction using secondary structure information and diresidue frequencies|journal=Bioinformatics|volume=21|issue=10|pages=2336–46|pmid=15741247|doi=10.1093/bioinformatics/bti328}}</ref><ref>{{Cite journal|last=Go, et al.|date=2010|title=Redox control systems in the nucleus: mechanisms and functions|journal=Antioxidants & Redox Signaling|volume=13|issue=4|pages=489–509}}</ref> | ||
{| class="wikitable" | {| class="wikitable" | ||
!Isoform | !Isoform | ||
Line 33: | Line 36: | ||
|} | |} | ||
== Expression == | |||
TMEM255A is predicted to be most abundantly expressed in nerve, brain, testis, ovary, thymus and kidney. The protein is expressed in a variety of tissues, but at relatively moderate levels.<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglist=Hs.437563|title=EST Profile: Transmembrane Protein Domain 255A|last=Input: TMEM255A | |||
TMEM255A is predicted to be most abundantly expressed in nerve, brain, testis, ovary, thymus and kidney. The protein is expressed in a variety of tissues, but at relatively moderate levels.<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglist=Hs.437563|title=EST Profile: Transmembrane Protein Domain 255A|last=Input: TMEM255A|date=|website=NCBI UniGene|access-date=April 2, 2017}}</ref><ref>{{cite web|last1=National Cancer Institute|first1=Cancer Genome Anatomy Project|title=Transmembrane protein 255A|url=https://cgap.nci.nih.gov/Genes/GeneInfo?ORG=Hs&CID=437563&LLNO=55026|website=National Cancer Institute|publisher=National Cancer Institute|accessdate=19 February 2017}}</ref><ref>{{cite web|last1=BioGPS|first1=BioGPS|title=TMEM255A|url=http://biogps.org/#goto=genereport&id=55026|website=BioGPS|publisher=BioGPS|accessdate=19 February 2017}}</ref> | |||
== Regulation of expression == | |||
Both the 5' and 3' [[Untranslated region|Untranslated Region]]<nowiki/>s (UTRs) are predicted to consist of several stem-loops.<ref>{{Cite web|url=http://unafold.rna.albany.edu/?q=mfold|title=SUNY Albany Research IT Group|date=2017-04-02|website=mFold}}</ref> The 3' UTR also contain a conserved [[MicroRNA|miRNA]] target site (amino acids 22-29).<ref>{{Cite web|url=http://www.targetscan.org/vert_71/|title=TargetScan Human: Prediction of miRNA Targets|last=Argawal et. al.|date=2017-04-17|website=TargetScan}}</ref> Phosphorylation and glycosylation sites have also been predicted in TMEM255A.<ref>{{Cite journal|last=Gupta & Brunak|date=2002|title=Prediction of glycosylation across the human proteome and the correlation to protein function|journal=Pacific Symposium on Biocomputing|volume=322|pages=310–22}}</ref><ref>{{Cite journal|last=Blom, et. al.|date=2004-06-04|title=Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence|journal=Proteomics|volume=6|pages=1633–49}}</ref> | |||
== | == Interacting proteins == | ||
[[Mass spectrometry|Affinity Capture MS]] experimentally predicts that TMEM255A interacts with ten different proteins; Ankyrin repeat domain 13D ([[ANKRD13C|ANKRD13D]]), Collagen beta (1-O) galactosyltransferase 2 (COLGALT2), Grancalcin ([[Grancalcin|GCA]]), Itchy E3 ubiquitin protein ligase (ITCH), Potassium channel tetramerization domain containing 2 (KCTD2), Neural precursor cell expressed developmentally down-regulated 4 ([[NEDD4]]), SEC24 family member B ([[SEC24D]]), Ubiquitin associated and SH3 domain containing B (UBASH3D), WW domain containing E3 ubiquitin protein ligase 1 and 2 ([[WWP1]], WWP2) - most of these are included in [[ubiquitination]] processes, transcription regulation and protein degradation.<ref>{{Cite journal|last=Chatr-Aryamontri, et. al.|date=2016-12-14|title=The BioGRID interaction database: 2017 update|url=https://thebiogrid.org/|journal=Nucleic Acids Research|volume=45|issue=D1|pages=D369–D379|pmid=27980099|pmc=5210573|doi=10.1093/nar/gkw1102}}</ref> | [[Mass spectrometry|Affinity Capture MS]] experimentally predicts that TMEM255A interacts with ten different proteins; Ankyrin repeat domain 13D ([[ANKRD13C|ANKRD13D]]), Collagen beta (1-O) galactosyltransferase 2 (COLGALT2), Grancalcin ([[Grancalcin|GCA]]), Itchy E3 ubiquitin protein ligase (ITCH), Potassium channel tetramerization domain containing 2 (KCTD2), Neural precursor cell expressed developmentally down-regulated 4 ([[NEDD4]]), SEC24 family member B ([[SEC24D]]), Ubiquitin associated and SH3 domain containing B (UBASH3D), WW domain containing E3 ubiquitin protein ligase 1 and 2 ([[WWP1]], WWP2) - most of these are included in [[ubiquitination]] processes, transcription regulation and protein degradation.<ref>{{Cite journal|last=Chatr-Aryamontri, et. al.|date=2016-12-14|title=The BioGRID interaction database: 2017 update|url=https://thebiogrid.org/|journal=Nucleic Acids Research|volume=45|issue=D1|pages=D369–D379|pmid=27980099|pmc=5210573|doi=10.1093/nar/gkw1102}}</ref> | ||
== Clinical significance == | |||
TMEM255A is predicted to be highly expressed in [[peroxisome]] proliferator-activated receptor γ [[Coactivator (genetics)|coactivator]] 1α-upregulated [[glioblastoma]] multiforme cells (specific gene function not yet fully established).<ref>{{Cite journal|last=Cho, et.al.|date=2017-01-13|title=Expression of PGC1α in glioblastoma multiforme patients|journal=Oncology Letters|volume=13|pages=4055–76}}</ref> Ongoing research is investigating the possibility of TMEM255A to be used in personalized [[immunotherapy]].<ref>{{Cite journal|last=Weinschenk, et. al.|date=2014|title=Personalized immunotherapy against several neuronal and brain tumors|url=https://www.google.com/patents/CA2929445A1?cl=en&hl=no|journal=U.S. Patent Application No|volume=14/531|pages=472}}</ref> | TMEM255A is predicted to be highly expressed in [[peroxisome]] proliferator-activated receptor γ [[Coactivator (genetics)|coactivator]] 1α-upregulated [[glioblastoma]] multiforme cells (specific gene function not yet fully established).<ref>{{Cite journal|last=Cho, et.al.|date=2017-01-13|title=Expression of PGC1α in glioblastoma multiforme patients|journal=Oncology Letters|volume=13|pages=4055–76}}</ref> Ongoing research is investigating the possibility of TMEM255A to be used in personalized [[immunotherapy]].<ref>{{Cite journal|last=Weinschenk, et. al.|date=2014|title=Personalized immunotherapy against several neuronal and brain tumors|url=https://www.google.com/patents/CA2929445A1?cl=en&hl=no|journal=U.S. Patent Application No|volume=14/531|pages=472}}</ref> | ||
== Homology == | |||
[[File:Time-calibrated phylogenetic tree for TMEM255A.png|thumb|256x256px|This time-calibrated phylogenetic tree shows the evolution of TMEM255A through its journey of human evolution. The distance on the tree correlates to years since divergence.]] | [[File:Time-calibrated phylogenetic tree for TMEM255A.png|thumb|256x256px|This time-calibrated phylogenetic tree shows the evolution of TMEM255A through its journey of human evolution. The distance on the tree correlates to years since divergence.]] | ||
There is one known [[paralog]] for TMEM255A, called TMEM255B, which is found on [[chromosome 13]] (position 13q34).<ref>{{cite web|last1=Human Gene Database|first1=GeneCards|title=TMEM255B Gene|url= | There is one known [[paralog]] for TMEM255A, called TMEM255B, which is found on [[chromosome 13]] (position 13q34).<ref>{{cite web|last1=Human Gene Database|first1=GeneCards|title=TMEM255B Gene|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=TMEM255B|website=Weizman Institute of Science|publisher=GeneCards|accessdate=19 February 2017}}</ref> TMEM255A is only found in the kingdom of [[animal]]ia, and its most distant homolog is found in [[Invertebrate|invertebrata]] (i.e. ''Saccoglossus kowalenskii''). | ||
{| class="wikitable" | {| class="wikitable" |
Revision as of 13:32, 3 November 2018
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Transmembrane protein 255A[1] is a protein that is encoded by the TMEM255A gene.[2] TMEM255A is often referred to as family with sequence similarity 70, member A (FAM70A).[3] The TMEM255A protein is transmembrane and is predicted to be located the nuclear envelope of eukaryote organisms.[4]
Gene
The TMEM25A gene (often referred to as Family with Sequence Similarity 70 Member A; FAM70A) is located on Xq24, spanning 60,555 base pairs.[6] TMEM255A is flanked by the genes ATPase Na+/K+ transporting family member beta 4 (ATP1B4) and NFKB activating protein pseudogene 1 (NKAPP1).[7]
mRNA
There are three variants of the transcript seen, where isoform 1 is the longest. The 5’- and 3’- UTRs of the mRNA spans 227 and 2207 base pairs, respectively, and are predicted to contain several stem-loops.[8] The mRNA is 3512 base pairs long and the gene consists of 9 exons.[9]
Protein
The longest protein encoded for is isoform 1, which spans 349 amino acids, and is predicted to have a molecular weight at 38 kDa and isoelectric point at pH 7.89.[11][12][13] Compared to the average vertebrate protein, TMEM255A is rich in aspartic acid, isoleucine, proline and tyrosine, and relatively poor in glutamic acid and lysine.[14] No charge clusters have been found in this protein.
The protein is predicted to be post-translationally modified by phosphorylation and glycosylation.[15] The protein is predicted to have four transmembrane domains in the nuclear membrane. The structure of the protein is predicted to be helical in the transmembrane domains.[16][17][18] Disulfide bonds are predicted to be found in the region in between transmembrane domains 3 and 4, which indicates that this particular region is located in the nucleoplasm.[19][20][21][22]
Isoform | Accession number | Description | |
---|---|---|---|
1 | NP_060408.3 | The longest transcript and isoform | |
2 | NP_001098014.1 | Shorter protein product than isoform 1, lacks one in-frame alternative mid-section exon | |
3 | NP_001098015.1 | Lacks three in-frame exons. Shorter than isoform 1 and 2. |
Expression
TMEM255A is predicted to be most abundantly expressed in nerve, brain, testis, ovary, thymus and kidney. The protein is expressed in a variety of tissues, but at relatively moderate levels.[23][24][25]
Regulation of expression
Both the 5' and 3' Untranslated Regions (UTRs) are predicted to consist of several stem-loops.[26] The 3' UTR also contain a conserved miRNA target site (amino acids 22-29).[27] Phosphorylation and glycosylation sites have also been predicted in TMEM255A.[28][29]
Interacting proteins
Affinity Capture MS experimentally predicts that TMEM255A interacts with ten different proteins; Ankyrin repeat domain 13D (ANKRD13D), Collagen beta (1-O) galactosyltransferase 2 (COLGALT2), Grancalcin (GCA), Itchy E3 ubiquitin protein ligase (ITCH), Potassium channel tetramerization domain containing 2 (KCTD2), Neural precursor cell expressed developmentally down-regulated 4 (NEDD4), SEC24 family member B (SEC24D), Ubiquitin associated and SH3 domain containing B (UBASH3D), WW domain containing E3 ubiquitin protein ligase 1 and 2 (WWP1, WWP2) - most of these are included in ubiquitination processes, transcription regulation and protein degradation.[30]
Clinical significance
TMEM255A is predicted to be highly expressed in peroxisome proliferator-activated receptor γ coactivator 1α-upregulated glioblastoma multiforme cells (specific gene function not yet fully established).[31] Ongoing research is investigating the possibility of TMEM255A to be used in personalized immunotherapy.[32]
Homology
There is one known paralog for TMEM255A, called TMEM255B, which is found on chromosome 13 (position 13q34).[33] TMEM255A is only found in the kingdom of animalia, and its most distant homolog is found in invertebrata (i.e. Saccoglossus kowalenskii).
Species | NCBI Accession # | Divergence (MYA) | Sequence Length (aa) | Sequence ID (%) | Sequence Similarity (%) |
---|---|---|---|---|---|
Homo sapiens (Human) | NP_060408.3 | - | 349 | 100 | 100 |
Elephantulus edwardii (Cape Elephant Shrew) | XP_006893850.1 | 105 | 351 | 97 | 98 |
Gallus gallus (Chicken) | XP_015134112.1 | 312 | 323 | 79 | 84 |
Chrysemys picta bellii (Painted turtle) | XP_008167250.1 | 312 | 323 | 79 | 84 |
Nanorana parkeri (High Himalaya frog) | XP_018415588.1 | 352 | 327 | 69 | 77 |
Cyprinus carpio (Common carp) | XP_018971120.1 | 435 | 342 | 58 | 67 |
Saccoglossus kowalevskii (Acorn worm) | XP_006819139.1 | 684 | 351 | 23 | 45 |
References
- ↑ "Homo sapiens transmembrane protein 255A (TMEM255A), transcript variant - Nucleotide - NCBI". www.ncbi.nlm.nih.gov. 2018-06-24.
- ↑ NCBI, National Center for Biotechnology Information. "TMEM255A Transmembrane Protein 255A [Homo sapiens]". NCBI (National Center for Biotechnology Information).
- ↑ Database, GeneCards Human Gene. "TMEM255A Gene - GeneCards | T255A Protein | T255A Antibody". www.genecards.org. Archived from the original on 2013-08-23.
- ↑ "Search: TMEM255A - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2017-04-26.
- ↑ ] (2017-05-06). Image: GeneCards, 2017
- ↑ "TMEM255A". www.genecards.org. April 25, 2017. Archived from the original on 2013-08-23.
- ↑ "Gene neighbors for Gene (Select 55026) - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2017-04-26.
- ↑ "The Mfold Web Server". unafold.rna.albany.edu. Retrieved 2017-04-25.
- ↑ National Center for Biotechnology Information, NCBI. "TMEM255A transmembrane protein 255A [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2017-04-26.
- ↑ Image: Kristin H. Aaen, 2017.
- ↑ National Center for Biotechnology Information, NCBI Gene (2017-04-02). "Transmembrane Domain 255A, Homo sapiens". NCBI Gene.
- ↑ Subramaniam, S. (1998). "The Biology Workbench: a seamless database and analysis environment for the biologist". Proteins. 2: 1–2.
- ↑ Toldo, Luca (April 25, 2017). "Gateway to Isoelectric Point Service". Archived from the original on 2008-10-26.
- ↑ Dyer, K. F. (1971). "The quiet revolution: A new synthesis of biological knowledge". Journal of Biological Education. 5: 15–24.
- ↑ Blom, N. (Summer 2002). "Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence". Proteomics. 6: 1633–49.
- ↑ Yang, J. (2015). "The I-TASSER Suite: Protein structure and function prediction". Nature Methods. 12 (1): 7–8. doi:10.1038/nmeth.3213. PMC 4428668. PMID 25549265.
- ↑ Roy, A. (2010). "I-TASSER: a unified platform for automated protein structure and function prediction". Nature Protocols. 5: 725–738.
- ↑ Zhang, Y. (2008). "I-TASSER server for protein 3D structure prediction". BMC Bioinformatics. 9: 40. doi:10.1186/1471-2105-9-40. PMC 2245901. PMID 18215316.
- ↑ Ferre & Clote (2006). "DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification". Nucleic Acids Res. - Web Servers.
- ↑ Ferre & Clote (Summer 2005). "DiANNA: a web server for disulfide connectivity prediction". Nucleic Acids Res. 33(Web Server Issue): W230–2.
- ↑ Ferre & Clote (Summer 2005). "Disulfide connectivity prediction using secondary structure information and diresidue frequencies". Bioinformatics. 21 (10): 2336–46. doi:10.1093/bioinformatics/bti328. PMID 15741247.
- ↑ Go; et al. (2010). "Redox control systems in the nucleus: mechanisms and functions". Antioxidants & Redox Signaling. 13 (4): 489–509.
- ↑ Input: TMEM255A. "EST Profile: Transmembrane Protein Domain 255A". NCBI UniGene. Retrieved April 2, 2017.
- ↑ National Cancer Institute, Cancer Genome Anatomy Project. "Transmembrane protein 255A". National Cancer Institute. National Cancer Institute. Retrieved 19 February 2017.
- ↑ BioGPS, BioGPS. "TMEM255A". BioGPS. BioGPS. Retrieved 19 February 2017.
- ↑ "SUNY Albany Research IT Group". mFold. 2017-04-02.
- ↑ Argawal et. al. (2017-04-17). "TargetScan Human: Prediction of miRNA Targets". TargetScan.
- ↑ Gupta & Brunak (2002). "Prediction of glycosylation across the human proteome and the correlation to protein function". Pacific Symposium on Biocomputing. 322: 310–22.
- ↑ Blom, et. al. (2004-06-04). "Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence". Proteomics. 6: 1633–49.
- ↑ Chatr-Aryamontri, et. al. (2016-12-14). "The BioGRID interaction database: 2017 update". Nucleic Acids Research. 45 (D1): D369–D379. doi:10.1093/nar/gkw1102. PMC 5210573. PMID 27980099.
- ↑ Cho, et.al. (2017-01-13). "Expression of PGC1α in glioblastoma multiforme patients". Oncology Letters. 13: 4055–76.
- ↑ Weinschenk, et. al. (2014). "Personalized immunotherapy against several neuronal and brain tumors". U.S. Patent Application No. 14/531: 472.
- ↑ Human Gene Database, GeneCards. "TMEM255B Gene". Weizman Institute of Science. GeneCards. Retrieved 19 February 2017.