Hepatocellular adenoma classification: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 3: | Line 3: | ||
{{CMG}}; {{AE}} {{ZAS}} | {{CMG}}; {{AE}} {{ZAS}} | ||
==Overview== | ==Overview== | ||
The hepatocellular adenomas are classified on the basis of molecular patterns called phenotypic-genotypic classification into 04 major groups including; HNF1 alpha inactivated adenoma, beta catenin activated adenoma, inflammatory hepatic adenoma and unclassified type adenoma. | The [[Hepatocellular adenoma|hepatocellular adenomas]] are classified on the basis of [[Molecule|molecular]] patterns called [[Phenotype|phenotypic]]-[[Genotype|genotypic]] classification into 04 major groups including; [[HNF1A|HNF1 alpha]] inactivated [[adenoma]], [[Beta-catenin|beta catenin]] activated [[adenoma]], [[Inflammation|inflammatory]] [[Liver|hepatic]] [[adenoma]] and unclassified type [[adenoma]]. | ||
==Classification== | ==Classification== | ||
* In 2007, Bioulac-sage and associates from bordeaux classified the hepatocellular adenomas based on molecular patterns called phenotypic-genotypic classification. They classified | * In 2007, Bioulac-sage and associates from bordeaux classified the [[Hepatocellular adenoma|hepatocellular adenomas]] based on [[Molecule|molecular]] patterns called [[Phenotype|phenotypic]]-[[Genotype|genotypic]] classification. They classified [[Hepatocellular adenoma|hepatocellular adenomas]] into 04 main groups.<ref>{{Cite journal | ||
| author = [[Kun Jiang]], [[Sameer Al-Diffhala]] & [[Barbara A. Centeno]] | | author = [[Kun Jiang]], [[Sameer Al-Diffhala]] & [[Barbara A. Centeno]] | ||
| title = Primary Liver Cancers-Part 1: Histopathology, Differential Diagnoses, and Risk Stratification | | title = Primary Liver Cancers-Part 1: Histopathology, Differential Diagnoses, and Risk Stratification | ||
Line 62: | Line 62: | ||
* '''HNF-1 alpha inactivated hepatocellular adenoma (35-40%)''' | * '''[[HNF1A|HNF-1 alpha]] inactivated [[hepatocellular adenoma]] (35-40%)''' | ||
** This group of hepatocellular adenomas is defined by the somatic inactivation of HNF1A (hepatocyte nuclear factor 1 A) gene, by a mutational mechanism in tumor cells.<ref>{{Cite journal | ** This group of [[Hepatocellular adenoma|hepatocellular adenomas]] is defined by the [[somatic]] inactivation of [[HNF1A]] ([[Hepatocyte nuclear factors|hepatocyte nuclear factor 1 A]]) [[gene]], by a [[Mutation|mutational]] mechanism in [[Tumor cell|tumor cells]].<ref>{{Cite journal | ||
| author = [[Aparna P.. Shreenath]] & [[Arslan Kahloon]] | | author = [[Aparna P.. Shreenath]] & [[Arslan Kahloon]] | ||
| title = Hepatic (Hepatocellular) Adenoma | | title = Hepatic (Hepatocellular) Adenoma | ||
Line 70: | Line 70: | ||
| pmid = 30020636 | | pmid = 30020636 | ||
}}</ref> | }}</ref> | ||
** HNF1A is a transcription factor controlling hepatocyte metabolism.<ref>{{Cite journal | ** [[HNF1A]] is a [[transcription factor]] controlling [[hepatocyte]] [[metabolism]].<ref>{{Cite journal | ||
| author = [[Motoko Sasaki]], [[Norihide Yoneda]], [[Seiko Kitamura]], [[Yasunori Sato]] & [[Yasuni Nakanuma]] | | author = [[Motoko Sasaki]], [[Norihide Yoneda]], [[Seiko Kitamura]], [[Yasunori Sato]] & [[Yasuni Nakanuma]] | ||
| title = Characterization of hepatocellular adenoma based on the phenotypic classification: The Kanazawa experience | | title = Characterization of hepatocellular adenoma based on the phenotypic classification: The Kanazawa experience | ||
Line 82: | Line 82: | ||
| pmid = 21883740 | | pmid = 21883740 | ||
}}</ref> | }}</ref> | ||
** Most of these variants show macrovesicular steatosis of variable extent and no atypical hepatocytes and are associated to metabolic syndrome. | ** Most of these variants show macrovesicular [[steatosis]] of variable extent and no atypical [[Hepatocyte|hepatocytes]] and are [[Association (statistics)|associated]] to [[metabolic syndrome]]. | ||
** This type occurs mostly in women and is often associated with maturity onset diabetes of young (MODY3). | ** This type occurs mostly in women and is often associated with [[Maturity onset diabetes of the young|maturity onset diabetes of young (MODY3)]]. | ||
** Expression of liver fatty acid binding protein (LFABP) involved in lipid trafficking, usually expressed in normal liver, is specifically downregulated in these cases as a consequence of HNF1A mutation. | ** Expression of [[liver]] [[fatty acid]] [[binding protein]] (LFABP) involved in [[lipid]] trafficking, usually expressed in normal [[liver]], is specifically [[Downregulation|downregulated]] in these cases as a consequence of [[HNF1A]] [[mutation]]. | ||
* '''Inflammatory hepatocellular adenoma (40-50%)''' | * '''Inflammatory [[hepatocellular adenoma]] (40-50%)''' | ||
** The most important feature of these tumors is activation of | ** The most important feature of these [[Tumor|tumors]] is activation of [[Janus kinase|JAK]]/[[STAT protein|STAT]] pathway.<ref>{{Cite journal | ||
| author = [[Jean-Charles Nault]], [[Paulette Bioulac-Sage]] & [[Jessica Zucman-Rossi]] | | author = [[Jean-Charles Nault]], [[Paulette Bioulac-Sage]] & [[Jessica Zucman-Rossi]] | ||
| title = Hepatocellular benign tumors-from molecular classification to personalized clinical care | | title = Hepatocellular benign tumors-from molecular classification to personalized clinical care | ||
Line 98: | Line 98: | ||
| pmid = 23485860 | | pmid = 23485860 | ||
}}</ref> | }}</ref> | ||
** Inflammatory hepatocellular adenomas also exhibit over expression of serum amyloid alpha (SAA) and C-reactive protein (CRP) induced by STAT3. | ** Inflammatory [[Hepatocellular adenoma|hepatocellular adenomas]] also exhibit over expression of [[serum]] [[amyloid]] alpha (SAA) and [[C-reactive protein|C-reactive protein (CRP)]] induced by [[STAT3]]. | ||
** They show greater morphological pleomorphism as they may show pseudo portal tracts, sinusoidal dilatation, dystrophic arteries, hemorrhage and inflammatory infiltrate. | ** They show greater [[Morphology|morphological]] [[pleomorphism]] as they may show pseudo portal tracts, [[Sinusoid (blood vessel)|sinusoidal]] [[Dilation|dilatation]], [[Dystrophy|dystrophic]] [[Artery|arteries]], [[hemorrhage]] and [[Inflammation|inflammatory]] infiltrate. | ||
** Inflammatory syndrome, obesity and alcohol consumption are reported in these patients. | ** [[Inflammation|Inflammatory]] [[syndrome]], [[obesity]] and [[alcohol]] consumption are reported in these [[Patient|patients]]. | ||
** Five different molecular drivers, IL6 signal transducer, FRK, STAT3, GNAS and JAK1 have been reported.<ref>{{Cite journal | ** Five different [[Molecule|molecular]] drivers, [[Interleukin 6|IL6]] signal transducer, FRK, [[STAT3]], [[GNAS-AS1|GNAS]] and [[Janus kinase|JAK1]] have been reported.<ref>{{Cite journal | ||
| author = [[Motoko Sasaki]], [[Norihide Yoneda]], [[Yoshiyuki Sawai]], [[Yasuharu Imai]], [[Fukuo Kondo]], [[Toshio Fukusato]], [[Seiichi Yoshikawa]], [[Satoshi Kobayashi]], [[Yasunori Sato]], [[Osamu Matsui]] & [[Yasuni Nakanuma]] | | author = [[Motoko Sasaki]], [[Norihide Yoneda]], [[Yoshiyuki Sawai]], [[Yasuharu Imai]], [[Fukuo Kondo]], [[Toshio Fukusato]], [[Seiichi Yoshikawa]], [[Satoshi Kobayashi]], [[Yasunori Sato]], [[Osamu Matsui]] & [[Yasuni Nakanuma]] | ||
| title = Clinicopathological characteristics of serum amyloid A-positive hepatocellular neoplasms/nodules arising in alcoholic cirrhosis | | title = Clinicopathological characteristics of serum amyloid A-positive hepatocellular neoplasms/nodules arising in alcoholic cirrhosis | ||
Line 113: | Line 113: | ||
| pmid = 25318388 | | pmid = 25318388 | ||
}}</ref> | }}</ref> | ||
* '''Beta catenin mutated hepatocellular adenoma (10-15%)''' | * '''[[Beta-catenin|Beta catenin]] [[Mutation|mutated]] [[hepatocellular adenoma]] (10-15%)''' | ||
** These are frequently associated with exposure to male hormones, glycogenolysis and familial adenomatous polyposis.<ref>{{Cite journal | ** These are frequently [[Association (statistics)|associated]] with exposure to male hormones, [[glycogenolysis]] and [[familial adenomatous polyposis]].<ref>{{Cite journal | ||
| author = [[Kimberley J. Evason]], [[James P. Grenert]], [[Linda D. Ferrell]] & [[Sanjay Kakar]] | | author = [[Kimberley J. Evason]], [[James P. Grenert]], [[Linda D. Ferrell]] & [[Sanjay Kakar]] | ||
| title = Atypical hepatocellular adenoma-like neoplasms with beta-catenin activation show cytogenetic alterations similar to well-differentiated hepatocellular carcinomas | | title = Atypical hepatocellular adenoma-like neoplasms with beta-catenin activation show cytogenetic alterations similar to well-differentiated hepatocellular carcinomas | ||
Line 126: | Line 126: | ||
| pmid = 23084586 | | pmid = 23084586 | ||
}}</ref> | }}</ref> | ||
** This group has a higher risk of malignant potential.<ref>{{Cite journal | ** This group has a higher risk of [[malignant]] potential.<ref>{{Cite journal | ||
| author = [[Camilla Pilati]], [[Eric Letouze]], [[Jean-Charles Nault]], [[Sandrine Imbeaud]], [[Anais Boulai]], [[Julien Calderaro]], [[Karine Poussin]], [[Andrea Franconi]], [[Gabrielle Couchy]], [[Guillaume Morcrette]], [[Maxime Mallet]], [[Said Taouji]], [[Charles Balabaud]], [[Benoit Terris]], [[Frederic Canal]], [[Valerie Paradis]], [[Jean-Yves Scoazec]], [[Anne de Muret]], [[Catherine Guettier]], [[Paulette Bioulac-Sage]], [[Eric Chevet]], [[Fabien Calvo]] & [[Jessica Zucman-Rossi]] | | author = [[Camilla Pilati]], [[Eric Letouze]], [[Jean-Charles Nault]], [[Sandrine Imbeaud]], [[Anais Boulai]], [[Julien Calderaro]], [[Karine Poussin]], [[Andrea Franconi]], [[Gabrielle Couchy]], [[Guillaume Morcrette]], [[Maxime Mallet]], [[Said Taouji]], [[Charles Balabaud]], [[Benoit Terris]], [[Frederic Canal]], [[Valerie Paradis]], [[Jean-Yves Scoazec]], [[Anne de Muret]], [[Catherine Guettier]], [[Paulette Bioulac-Sage]], [[Eric Chevet]], [[Fabien Calvo]] & [[Jessica Zucman-Rossi]] | ||
| title = Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation | | title = Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation | ||
Line 138: | Line 138: | ||
| pmid = 24735922 | | pmid = 24735922 | ||
}}</ref> | }}</ref> | ||
** Morphologically these tumors have | ** [[Morphology|Morphologically]] these [[Tumor|tumors]] have [[Cytology|cytological]] and architectural atypical features of [[Tumor|tumoral]] [[Hepatocyte|hepatocytes]] and [[cholestasis]] as well. | ||
** On immunohistochemical staining, these adenomas tend to stain for glutamine synthetase rather than beta catenin, which stains patchily. | ** On [[immunohistochemical staining]], these [[Adenoma|adenomas]] tend to stain for [[glutamine synthetase]] rather than [[Beta-catenin|beta catenin]], which [[Stain|stains]] patchily. | ||
* '''Unclassified hepatocellular adenoma (10%)''' | * '''Unclassified [[hepatocellular adenoma]] (10%)''' | ||
** By definition, they lack characteristics of other subtypes and their identification | ** By definition, they lack characteristics of other subtypes and their identification relies on a silent [[phenotype]] and by exclusion of criteria featuring other subtypes. | ||
** Until now their pathogenesis remains unidentified. | ** Until now their [[pathogenesis]] remains unidentified. | ||
** These adenomas do not stain for the C-reactive protein (CRP), beta catenin or glutamine synthetase.<ref>{{Cite journal | ** These [[Adenoma|adenomas]] do not [[stain]] for the [[C-reactive protein|C-reactive protein (CRP)]], [[Beta-catenin|beta catenin]] or [[glutamine synthetase]].<ref>{{Cite journal | ||
| author = [[Paulette Bioulac-Sage]], [[Gaelle Cubel]], [[Said Taouji]], [[Jean-Yves Scoazec]], [[Emmanuelle Leteurtre]], [[Valerie Paradis]], [[Nathalie Sturm]], [[Jeanne Tran Van Nhieu]], [[Dominique Wendum]], [[Brigitte Bancel]], [[Jeanne Ramos]], [[Francois Paraf]], [[Marie Christine Saint Paul]], [[Sophie Michalak]], [[Monique Fabre]], [[Catherine Guettier]], [[Brigitte Le Bail]], [[Jessica Zucman-Rossi]] & [[Charles Balabaud]] | | author = [[Paulette Bioulac-Sage]], [[Gaelle Cubel]], [[Said Taouji]], [[Jean-Yves Scoazec]], [[Emmanuelle Leteurtre]], [[Valerie Paradis]], [[Nathalie Sturm]], [[Jeanne Tran Van Nhieu]], [[Dominique Wendum]], [[Brigitte Bancel]], [[Jeanne Ramos]], [[Francois Paraf]], [[Marie Christine Saint Paul]], [[Sophie Michalak]], [[Monique Fabre]], [[Catherine Guettier]], [[Brigitte Le Bail]], [[Jessica Zucman-Rossi]] & [[Charles Balabaud]] | ||
| title = Immunohistochemical markers on needle biopsies are helpful for the diagnosis of focal nodular hyperplasia and hepatocellular adenoma subtypes | | title = Immunohistochemical markers on needle biopsies are helpful for the diagnosis of focal nodular hyperplasia and hepatocellular adenoma subtypes |
Revision as of 13:38, 15 January 2019
Hepatocellular adenoma Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Hepatocellular adenoma classification On the Web |
American Roentgen Ray Society Images of Hepatocellular adenoma classification |
Risk calculators and risk factors for Hepatocellular adenoma classification |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Zahir Ali Shaikh, MD[2]
Overview
The hepatocellular adenomas are classified on the basis of molecular patterns called phenotypic-genotypic classification into 04 major groups including; HNF1 alpha inactivated adenoma, beta catenin activated adenoma, inflammatory hepatic adenoma and unclassified type adenoma.
Classification
- In 2007, Bioulac-sage and associates from bordeaux classified the hepatocellular adenomas based on molecular patterns called phenotypic-genotypic classification. They classified hepatocellular adenomas into 04 main groups.[1][2][3][4]
Hepatocellular Adenoma | |||||||||||||||||||||||||||||||||||||||||||
HNF-1 alpha inactivated adenoma | Beta catenin activated adenoma | Inflammatory hepatic adenoma | Unclassified type adenoma | ||||||||||||||||||||||||||||||||||||||||
- HNF-1 alpha inactivated hepatocellular adenoma (35-40%)
- This group of hepatocellular adenomas is defined by the somatic inactivation of HNF1A (hepatocyte nuclear factor 1 A) gene, by a mutational mechanism in tumor cells.[5]
- HNF1A is a transcription factor controlling hepatocyte metabolism.[6]
- Most of these variants show macrovesicular steatosis of variable extent and no atypical hepatocytes and are associated to metabolic syndrome.
- This type occurs mostly in women and is often associated with maturity onset diabetes of young (MODY3).
- Expression of liver fatty acid binding protein (LFABP) involved in lipid trafficking, usually expressed in normal liver, is specifically downregulated in these cases as a consequence of HNF1A mutation.
- Inflammatory hepatocellular adenoma (40-50%)
- The most important feature of these tumors is activation of JAK/STAT pathway.[7]
- Inflammatory hepatocellular adenomas also exhibit over expression of serum amyloid alpha (SAA) and C-reactive protein (CRP) induced by STAT3.
- They show greater morphological pleomorphism as they may show pseudo portal tracts, sinusoidal dilatation, dystrophic arteries, hemorrhage and inflammatory infiltrate.
- Inflammatory syndrome, obesity and alcohol consumption are reported in these patients.
- Five different molecular drivers, IL6 signal transducer, FRK, STAT3, GNAS and JAK1 have been reported.[8]
- Beta catenin mutated hepatocellular adenoma (10-15%)
- These are frequently associated with exposure to male hormones, glycogenolysis and familial adenomatous polyposis.[9]
- This group has a higher risk of malignant potential.[10]
- Morphologically these tumors have cytological and architectural atypical features of tumoral hepatocytes and cholestasis as well.
- On immunohistochemical staining, these adenomas tend to stain for glutamine synthetase rather than beta catenin, which stains patchily.
- Unclassified hepatocellular adenoma (10%)
- By definition, they lack characteristics of other subtypes and their identification relies on a silent phenotype and by exclusion of criteria featuring other subtypes.
- Until now their pathogenesis remains unidentified.
- These adenomas do not stain for the C-reactive protein (CRP), beta catenin or glutamine synthetase.[11]
References
- ↑ Kun Jiang, Sameer Al-Diffhala & Barbara A. Centeno (2018). "Primary Liver Cancers-Part 1: Histopathology, Differential Diagnoses, and Risk Stratification". Cancer control : journal of the Moffitt Cancer Center. 25 (1): 1073274817744625. doi:10.1177/1073274817744625. PMID 29350068. Unknown parameter
|month=
ignored (help) - ↑ H. Dharmana, S. Saravana-Bawan, S. Girgis & G. Low (2017). "Hepatocellular adenoma: imaging review of the various molecular subtypes". Clinical radiology. 72 (4): 276–285. doi:10.1016/j.crad.2016.12.020. PMID 28126185. Unknown parameter
|month=
ignored (help) - ↑ Paulette Bioulac-Sage, Christine Sempoux & Charles Balabaud (2017). "Hepatocellular adenoma: Classification, variants and clinical relevance". Seminars in diagnostic pathology. 34 (2): 112–125. doi:10.1053/j.semdp.2016.12.007. PMID 28131467. Unknown parameter
|month=
ignored (help) - ↑ Paulette Bioulac-Sage, Sandra Rebouissou, Cristel Thomas, Jean-Frederic Blanc, Jean Saric, Antonio Sa Cunha, Anne Rullier, Gaelle Cubel, Gabrielle Couchy, Sandrine Imbeaud, Charles Balabaud & Jessica Zucman-Rossi (2007). "Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry". Hepatology (Baltimore, Md.). 46 (3): 740–748. doi:10.1002/hep.21743. PMID 17663417. Unknown parameter
|month=
ignored (help) - ↑ Aparna P.. Shreenath & Arslan Kahloon (2018). "Hepatic (Hepatocellular) Adenoma". PMID 30020636. Unknown parameter
|month=
ignored (help) - ↑ Motoko Sasaki, Norihide Yoneda, Seiko Kitamura, Yasunori Sato & Yasuni Nakanuma (2011). "Characterization of hepatocellular adenoma based on the phenotypic classification: The Kanazawa experience". Hepatology research : the official journal of the Japan Society of Hepatology. 41 (10): 982–988. doi:10.1111/j.1872-034X.2011.00851.x. PMID 21883740. Unknown parameter
|month=
ignored (help) - ↑ Jean-Charles Nault, Paulette Bioulac-Sage & Jessica Zucman-Rossi (2013). "Hepatocellular benign tumors-from molecular classification to personalized clinical care". Gastroenterology. 144 (5): 888–902. doi:10.1053/j.gastro.2013.02.032. PMID 23485860. Unknown parameter
|month=
ignored (help) - ↑ Motoko Sasaki, Norihide Yoneda, Yoshiyuki Sawai, Yasuharu Imai, Fukuo Kondo, Toshio Fukusato, Seiichi Yoshikawa, Satoshi Kobayashi, Yasunori Sato, Osamu Matsui & Yasuni Nakanuma (2015). "Clinicopathological characteristics of serum amyloid A-positive hepatocellular neoplasms/nodules arising in alcoholic cirrhosis". Histopathology. 66 (6): 836–845. doi:10.1111/his.12588. PMID 25318388. Unknown parameter
|month=
ignored (help) - ↑ Kimberley J. Evason, James P. Grenert, Linda D. Ferrell & Sanjay Kakar (2013). "Atypical hepatocellular adenoma-like neoplasms with beta-catenin activation show cytogenetic alterations similar to well-differentiated hepatocellular carcinomas". Human pathology. 44 (5): 750–758. doi:10.1016/j.humpath.2012.07.019. PMID 23084586. Unknown parameter
|month=
ignored (help) - ↑ Camilla Pilati, Eric Letouze, Jean-Charles Nault, Sandrine Imbeaud, Anais Boulai, Julien Calderaro, Karine Poussin, Andrea Franconi, Gabrielle Couchy, Guillaume Morcrette, Maxime Mallet, Said Taouji, Charles Balabaud, Benoit Terris, Frederic Canal, Valerie Paradis, Jean-Yves Scoazec, Anne de Muret, Catherine Guettier, Paulette Bioulac-Sage, Eric Chevet, Fabien Calvo & Jessica Zucman-Rossi (2014). "Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation". Cancer cell. 25 (4): 428–441. doi:10.1016/j.ccr.2014.03.005. PMID 24735922. Unknown parameter
|month=
ignored (help) - ↑ Paulette Bioulac-Sage, Gaelle Cubel, Said Taouji, Jean-Yves Scoazec, Emmanuelle Leteurtre, Valerie Paradis, Nathalie Sturm, Jeanne Tran Van Nhieu, Dominique Wendum, Brigitte Bancel, Jeanne Ramos, Francois Paraf, Marie Christine Saint Paul, Sophie Michalak, Monique Fabre, Catherine Guettier, Brigitte Le Bail, Jessica Zucman-Rossi & Charles Balabaud (2012). "Immunohistochemical markers on needle biopsies are helpful for the diagnosis of focal nodular hyperplasia and hepatocellular adenoma subtypes". The American journal of surgical pathology. 36 (11): 1691–1699. doi:10.1097/PAS.0b013e3182653ece. PMID 23060349. Unknown parameter
|month=
ignored (help)