Chronic neutrophilic leukemia pathophysiology: Difference between revisions
Homa Najafi (talk | contribs) No edit summary |
Homa Najafi (talk | contribs) |
||
Line 93: | Line 93: | ||
*The progression to [disease name] usually involves the [molecular pathway]. | *The progression to [disease name] usually involves the [molecular pathway]. | ||
*The pathophysiology of [disease/malignancy] depends on the histological subtype. | *The pathophysiology of [disease/malignancy] depends on the histological subtype. | ||
Discovery of the CSF3R mutation in 2013 has expanded our understanding of the molecular pathogenesis of CNL.16,23 CSF3R encodes the receptor for neutrophilic growth factor CSF3,30 and it exploits the Janus-associated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway for signal transduction, among others.31 Two classes of CSF3R mutations are observed in CNL-membrane-proximal mutations and truncation mutations (Table 2). The truncation mutations prompt the loss of a di-leucine internalization motif in the cytoplasmic domain of the CSF3R receptor and the binding site for suppressor of cytokine signaling 3, resulting in decreased lysosomal trafficking of the receptor. This in turn augments the cell-surface expression of the receptor, thus conferring ligand hypersensitivity and ensuing neutrophil proliferation. In contrast, the membrane-proximal mutations cause ligandindependent homodimerization, inducing autonomous cell proliferation. | Discovery of the CSF3R mutation in 2013 has expanded our understanding of the molecular pathogenesis of CNL.16,23 CSF3R encodes the receptor for neutrophilic growth factor CSF3,30 and it exploits the Janus-associated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway for signal transduction, among others.31 Two classes of CSF3R mutations are observed in CNL-membrane-proximal mutations and truncation mutations (Table 2). The truncation mutations prompt the loss of a di-leucine internalization motif in the cytoplasmic domain of the CSF3R receptor and the binding site for suppressor of cytokine signaling 3, resulting in decreased lysosomal trafficking of the receptor. This in turn augments the cell-surface expression of the receptor, thus conferring ligand hypersensitivity and ensuing neutrophil proliferation. In contrast, the membrane-proximal mutations cause ligandindependent homodimerization, inducing autonomous cell proliferation. | ||
Line 101: | Line 99: | ||
==Genetics== | ==Genetics== | ||
The development of CNL is the result of multiple genetic mutations such as:<ref name="PardananiLasho2013">{{cite journal|last1=Pardanani|first1=A|last2=Lasho|first2=T L|last3=Laborde|first3=R R|last4=Elliott|first4=M|last5=Hanson|first5=C A|last6=Knudson|first6=R A|last7=Ketterling|first7=R P|last8=Maxson|first8=J E|last9=Tyner|first9=J W|last10=Tefferi|first10=A|title=CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia|journal=Leukemia|volume=27|issue=9|year=2013|pages=1870–1873|issn=0887-6924|doi=10.1038/leu.2013.122}}</ref><ref name="ElliottPardanani2015">{{cite journal|last1=Elliott|first1=Michelle A.|last2=Pardanani|first2=Animesh|last3=Hanson|first3=Curtis A.|last4=Lasho|first4=Terra L.|last5=Finke|first5=Christy M.|last6=Belachew|first6=Alem A.|last7=Tefferi|first7=Ayalew|title=ASXL1mutations are frequent and prognostically detrimental inCSF3R-mutated chronic neutrophilic leukemia|journal=American Journal of Hematology|volume=90|issue=7|year=2015|pages=653–656|issn=03618609|doi=10.1002/ajh.24031}}</ref><ref name="MaxsonGotlib2013">{{cite journal|last1=Maxson|first1=Julia E.|last2=Gotlib|first2=Jason|last3=Pollyea|first3=Daniel A.|last4=Fleischman|first4=Angela G.|last5=Agarwal|first5=Anupriya|last6=Eide|first6=Christopher A.|last7=Bottomly|first7=Daniel|last8=Wilmot|first8=Beth|last9=McWeeney|first9=Shannon K.|last10=Tognon|first10=Cristina E.|last11=Pond|first11=J. Blake|last12=Collins|first12=Robert H.|last13=Goueli|first13=Basem|last14=Oh|first14=Stephen T.|last15=Deininger|first15=Michael W.|last16=Chang|first16=Bill H.|last17=Loriaux|first17=Marc M.|last18=Druker|first18=Brian J.|last19=Tyner|first19=Jeffrey W.|title=Oncogenic CSF3R Mutations in Chronic Neutrophilic Leukemia and Atypical CML|journal=New England Journal of Medicine|volume=368|issue=19|year=2013|pages=1781–1790|issn=0028-4793|doi=10.1056/NEJMoa1214514}}</ref><ref name="GotlibMaxson2013">{{cite journal|last1=Gotlib|first1=J.|last2=Maxson|first2=J. E.|last3=George|first3=T. I.|last4=Tyner|first4=J. W.|title=The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment|journal=Blood|volume=122|issue=10|year=2013|pages=1707–1711|issn=0006-4971|doi=10.1182/blood-2013-05-500959}}</ref><ref name="MeggendorferHaferlach2014">{{cite journal|last1=Meggendorfer|first1=M.|last2=Haferlach|first2=T.|last3=Alpermann|first3=T.|last4=Jeromin|first4=S.|last5=Haferlach|first5=C.|last6=Kern|first6=W.|last7=Schnittger|first7=S.|title=Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia|journal=Haematologica|volume=99|issue=12|year=2014|pages=e244–e246|issn=0390-6078|doi=10.3324/haematol.2014.113159}}</ref><ref name="CuiLi2014">{{cite journal|last1=Cui|first1=Yajuan|last2=Li|first2=Bing|last3=Gale|first3=Robert Peter|last4=Jiang|first4=Qian|last5=Xu|first5=Zefeng|last6=Qin|first6=Tiejun|last7=Zhang|first7=Peihong|last8=Zhang|first8=Yue|last9=Xiao|first9=Zhijian|title=CSF3R, SETBP1 and CALR mutations in chronic neutrophilic leukemia|journal=Journal of Hematology & Oncology|volume=7|issue=1|year=2014|issn=1756-8722|doi=10.1186/s13045-014-0077-1}}</ref><ref name="DaoTyner2015">{{cite journal|last1=Dao|first1=K.-H. T.|last2=Tyner|first2=J. W.|title=What's different about atypical CML and chronic neutrophilic leukemia?|journal=Hematology|volume=2015|issue=1|year=2015|pages=264–271|issn=1520-4391|doi=10.1182/asheducation-2015.1.264}}</ref> | |||
*CSF3R | |||
*SETBP1 | |||
*ASXL1 | |||
*TET2 | |||
* | *EZH2, | ||
* | *KDM6A | ||
* | |||
* | |||
* | |||
* | |||
==Associated Conditions== | ==Associated Conditions== |
Revision as of 21:13, 17 January 2019
Chronic neutrophilic leukemia Microchapters |
Differentiating Chronic neutrophilic leukemia from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Chronic neutrophilic leukemia pathophysiology On the Web |
American Roentgen Ray Society Images of Chronic neutrophilic leukemia pathophysiology |
Directions to Hospitals Treating Chronic neutrophilic leukemia |
Risk calculators and risk factors for Chronic neutrophilic leukemia pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
Overview
The exact pathogenesis of [disease name] is not fully understood.
OR
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
OR
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
OR
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
OR
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
OR
The progression to [disease name] usually involves the [molecular pathway].
OR
The pathophysiology of [disease/malignancy] depends on the histological subtype.
Pathophysiology
Pathogenesis
- It is understood that clonality has a role in the pathogenesis of CNL.[1]
- The cytogenetic abnormalities may be seen in CNL patients are:[2][3][4][5][6][7][8]
- Specific ones:
- Trisomy 8
- Trisomy 21
- Deletion 11q
- Deletion 20q6
- non-specific ones:
- Deletion Y
- Trisomy 7
- Trisomy 9
- Detection of JAK2V617F
- Specific ones:
- [Pathogen name] is usually transmitted via the [transmission route] route to the human host.
- Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
- [Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
- The progression to [disease name] usually involves the [molecular pathway].
- The pathophysiology of [disease/malignancy] depends on the histological subtype.
Discovery of the CSF3R mutation in 2013 has expanded our understanding of the molecular pathogenesis of CNL.16,23 CSF3R encodes the receptor for neutrophilic growth factor CSF3,30 and it exploits the Janus-associated kinase (JAK)/signal transducer and activator of transcription (STAT) pathway for signal transduction, among others.31 Two classes of CSF3R mutations are observed in CNL-membrane-proximal mutations and truncation mutations (Table 2). The truncation mutations prompt the loss of a di-leucine internalization motif in the cytoplasmic domain of the CSF3R receptor and the binding site for suppressor of cytokine signaling 3, resulting in decreased lysosomal trafficking of the receptor. This in turn augments the cell-surface expression of the receptor, thus conferring ligand hypersensitivity and ensuing neutrophil proliferation. In contrast, the membrane-proximal mutations cause ligandindependent homodimerization, inducing autonomous cell proliferation.
The 2 CSF3R mutation classes do not merely differ in their transforming capacity but also in downstream signal activation. In vitro studies have revealed that membrane-proximal mutations (T615A, T618I, and T640N) result in dysregulated JAK2/STAT3 signaling, and truncation mutations (D771fs, S783fs, Y752X, and W791X) result in dysregulation of SRC family tyrosine kinase nonreceptor 2 (TNK2 kinases),33 thus bestowing sensitivity to JAK inhibitor ruxolitinib and SRC kinase inhibitor dasatinib, respectively 23,34 Truncation mutations engender ligand-dependent receptor activation in a Ba/f3 cell line as opposed to the membraneproximal mutations. Furthermore, truncation mutations necessitate the presence of cooperating mutations to realize their oncogenic potential.23,35 Additionally, 33% of patients manifest dual truncation and membrane-proximal mutations on the same allele,23 and display enhanced leukemogenicity through activation of mitogenactivated protein kinase (MAPK) signaling pathway. These compound mutants are characteristically impervious to ruxolitinib or dasatinib, given their reliance on MAPK signaling.
Genetics
The development of CNL is the result of multiple genetic mutations such as:[9][2][10][11][12][13][14]
- CSF3R
- SETBP1
- ASXL1
- TET2
- EZH2,
- KDM6A
Associated Conditions
Conditions associated with CNL include:[15][16][17][18][19][20]
- Polycythemia vera
- Plasma cell disorders:
- Multiple myeloma
- Monoclonal gammopathy of undetermined significance
- Plasmacytoma
- nephrotic syndrome
Gross Pathology
On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
Microscopic Pathology
On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
References
- ↑ J. Bohm, S. Kock, H. E. Schaefer & P. Fisch (2003). "Evidence of clonality in chronic neutrophilic leukaemia". Journal of clinical pathology. 56 (4): 292–295. PMID 12663642. Unknown parameter
|month=
ignored (help) - ↑ 2.0 2.1 Elliott, Michelle A.; Pardanani, Animesh; Hanson, Curtis A.; Lasho, Terra L.; Finke, Christy M.; Belachew, Alem A.; Tefferi, Ayalew (2015). "ASXL1mutations are frequent and prognostically detrimental inCSF3R-mutated chronic neutrophilic leukemia". American Journal of Hematology. 90 (7): 653–656. doi:10.1002/ajh.24031. ISSN 0361-8609.
- ↑ John T. Reilly (2002). "Chronic neutrophilic leukaemia: a distinct clinical entity?". British journal of haematology. 116 (1): 10–18. PMID 11841395. Unknown parameter
|month=
ignored (help) - ↑ Piliotis, E.; Kutas, G.; Lipton, J.H. (2009). "Allogeneic Bone Marrow Transplantation in the Management of Chronic Neutrophilic Leukemia". Leukemia & Lymphoma. 43 (10): 2051–2054. doi:10.1080/1042819021000016087. ISSN 1042-8194.
- ↑ Elliott, M A; Hanson, C A; Dewald, G W; Smoley, S A; Lasho, T L; Tefferi, A (2004). "WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature". Leukemia. 19 (2): 313–317. doi:10.1038/sj.leu.2403562. ISSN 0887-6924.
- ↑ Donato, Carlo Di; Croci, Gianfranco; Lazzari, Stefano; Scarduelli, Laura; Vignoli, Roberto; Buia, Marco; Tramaloni, Casimiro; Maccari, Sergio; Plancher, Angelo Cesare (1986). "Chronic Neutrophilic Leukemia: Description of a New Case with Karyotypic Abnormalities". American Journal of Clinical Pathology. 85 (3): 369–371. doi:10.1093/ajcp/85.3.369. ISSN 1943-7722.
- ↑ Michelle A. Elliott (2004). "Chronic neutrophilic leukemia: a contemporary review". Current hematology reports. 3 (3): 210–217. PMID 15087070. Unknown parameter
|month=
ignored (help) - ↑ Donald P. Mc Lornan, Melanie J. Percy, Amy V. Jones, Nicholas C. P. Cross & Mary Frances Mc Mullin (2005). "Chronic neutrophilic leukemia with an associated V617F JAK2 tyrosine kinase mutation". Haematologica. 90 (12): 1696–1697. PMID 16330446. Unknown parameter
|month=
ignored (help) - ↑ Pardanani, A; Lasho, T L; Laborde, R R; Elliott, M; Hanson, C A; Knudson, R A; Ketterling, R P; Maxson, J E; Tyner, J W; Tefferi, A (2013). "CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia". Leukemia. 27 (9): 1870–1873. doi:10.1038/leu.2013.122. ISSN 0887-6924.
- ↑ Maxson, Julia E.; Gotlib, Jason; Pollyea, Daniel A.; Fleischman, Angela G.; Agarwal, Anupriya; Eide, Christopher A.; Bottomly, Daniel; Wilmot, Beth; McWeeney, Shannon K.; Tognon, Cristina E.; Pond, J. Blake; Collins, Robert H.; Goueli, Basem; Oh, Stephen T.; Deininger, Michael W.; Chang, Bill H.; Loriaux, Marc M.; Druker, Brian J.; Tyner, Jeffrey W. (2013). "Oncogenic CSF3R Mutations in Chronic Neutrophilic Leukemia and Atypical CML". New England Journal of Medicine. 368 (19): 1781–1790. doi:10.1056/NEJMoa1214514. ISSN 0028-4793.
- ↑ Gotlib, J.; Maxson, J. E.; George, T. I.; Tyner, J. W. (2013). "The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment". Blood. 122 (10): 1707–1711. doi:10.1182/blood-2013-05-500959. ISSN 0006-4971.
- ↑ Meggendorfer, M.; Haferlach, T.; Alpermann, T.; Jeromin, S.; Haferlach, C.; Kern, W.; Schnittger, S. (2014). "Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia". Haematologica. 99 (12): e244–e246. doi:10.3324/haematol.2014.113159. ISSN 0390-6078.
- ↑ Cui, Yajuan; Li, Bing; Gale, Robert Peter; Jiang, Qian; Xu, Zefeng; Qin, Tiejun; Zhang, Peihong; Zhang, Yue; Xiao, Zhijian (2014). "CSF3R, SETBP1 and CALR mutations in chronic neutrophilic leukemia". Journal of Hematology & Oncology. 7 (1). doi:10.1186/s13045-014-0077-1. ISSN 1756-8722.
- ↑ Dao, K.-H. T.; Tyner, J. W. (2015). "What's different about atypical CML and chronic neutrophilic leukemia?". Hematology. 2015 (1): 264–271. doi:10.1182/asheducation-2015.1.264. ISSN 1520-4391.
- ↑ Rending Wang, Hongyan Tong, Huiping Wang, Zhimin Chen, Lijun Wang & Jianghua Chen (2014). "Nephrotic syndrome related to chronic neutrophilic leukemia". Internal medicine (Tokyo, Japan). 53 (21): 2505–2509. PMID 25366011.
- ↑ Bain, Barbara J.; Ahmad, Shahzaib (2015). "Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions". British Journal of Haematology. 171 (3): 400–410. doi:10.1111/bjh.13600. ISSN 0007-1048.
- ↑ Higuchi, Takakazu; Oba, Remi; Endo, Mitsue; Harada, Hiroshi; Mori, Hiraku; Niikura, Haruo; Omine, Mitsuhiro; Fujita, Kazuhiro (2009). "Transition of Polycythemia Vera to Chronic Neutrophilic Leukemia". Leukemia & Lymphoma. 33 (1–2): 203–206. doi:10.3109/10428199909093744. ISSN 1042-8194.
- ↑ Lee, Seung Soon; Moon, Joon Ho; Ha, Jun Wook; Lee, Young Kyung; Ahn, Jin Seok; Zang, Dae Young; Kim, Hyo Jung (2004). "A Case of Transition of Polycythemia Vera to Chronic Neutrophilic Leukemia". The Korean Journal of Internal Medicine. 19 (4): 285–288. doi:10.3904/kjim.2004.19.4.285. ISSN 1226-3303.
- ↑ Cehreli, Cavit; Undar, Bulent; Akkoc, Nurullah; Onvural, Banu; Altungoz, Oguz (1994). "Coexistence of Chronic Neutrophilic Leukemia with Light Chain Myeloma". Acta Haematologica. 91 (1): 32–34. doi:10.1159/000204241. ISSN 0001-5792.
- ↑ DinÇol, GünÇağ; NalÇacI, Meliha; Doğan, Öner; Aktan, Melih; KüÇükkaya, Reyhan; Ağan, Mehmet; DinÇol, Koray (2009). "Coexistence of Chronic Neutrophilic Leukemia with Multiple Myeloma". Leukemia & Lymphoma. 43 (3): 649–651. doi:10.1080/10428190290012218. ISSN 1042-8194.