RGS9: Difference between revisions
m Bot: HTTP→HTTPS |
imported>Josve05a |
||
Line 2: | Line 2: | ||
'''Regulator of G-protein signalling 9''', also known as '''RGS9''', is a human [[gene]],<ref name="entrez">{{cite web | title = Entrez Gene: RGS9 regulator of G-protein signalling 9| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8787| accessdate = }}</ref> which codes for a protein involved in regulation of [[signal transduction]] inside cells. Members of the [[Regulator of G protein signalling|RGS family]], such as RGS9, are signaling proteins that suppress the activity of [[G protein]]s by promoting their deactivation.[supplied by OMIM]<ref name="entrez" /> | '''Regulator of G-protein signalling 9''', also known as '''RGS9''', is a human [[gene]],<ref name="entrez">{{cite web | title = Entrez Gene: RGS9 regulator of G-protein signalling 9| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8787| accessdate = }}</ref> which codes for a protein involved in regulation of [[signal transduction]] inside cells. Members of the [[Regulator of G protein signalling|RGS family]], such as RGS9, are signaling proteins that suppress the activity of [[G protein]]s by promoting their deactivation.[supplied by OMIM]<ref name="entrez" /> | ||
There are two splice isoforms of RGS9 with quite different properties and patterns of expression. RGS9-1 is mainly found in the eye and is involved in regulation of phototransduction in [[Photoreceptor cell|rod and cone cells]] of the [[retina]], while RGS9-2 is found in the brain, and regulates dopamine and opioid signaling in the [[basal ganglia]].<ref name="pmid19098104">{{cite journal |vauthors=Martemyanov KA, Krispel CM, Lishko PV, Burns ME, Arshavsky VY |title=Functional comparison of RGS9 splice isoforms in a living cell |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=105 |issue=52 |pages=20988–93 |date=December 2008 |pmid=19098104 |pmc=2634932 |doi=10.1073/pnas.0808941106 |url=}}</ref> | There are two splice isoforms of RGS9 with quite different properties and patterns of expression. RGS9-1 is mainly found in the eye and is involved in regulation of phototransduction in [[Photoreceptor cell|rod and cone cells]] of the [[retina]], while RGS9-2 is found in the brain, and regulates dopamine and opioid signaling in the [[basal ganglia]].<ref name="pmid19098104">{{cite journal |vauthors=Martemyanov KA, Krispel CM, Lishko PV, Burns ME, Arshavsky VY |title=Functional comparison of RGS9 splice isoforms in a living cell |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=105 |issue=52 |pages=20988–93 |date=December 2008 |pmid=19098104 |pmc=2634932 |doi=10.1073/pnas.0808941106 |url=|bibcode=2008PNAS..10520988M }}</ref> | ||
RGS9-2 is of particular interest as the most important RGS protein involved in terminating signalling by the [[mu opioid receptor]] (although [[RGS4]] and [[RGS17]] are also involved), and is thought to be important in the development of tolerance to opioid drugs.<ref name="pmid11207815">{{cite journal |vauthors=Garzón J, Rodríguez-Díaz M, López-Fando A, Sánchez-Blázquez P |title=RGS9 proteins facilitate acute tolerance to mu-opioid effects |journal=The European Journal of Neuroscience |volume=13 |issue=4 |pages=801–11 |date=February 2001 |pmid=11207815 |doi= 10.1046/j.0953-816x.2000.01444.x|url=}}</ref><ref name="pmid14595021">{{cite journal |vauthors=Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R, Berton O, Neve RL, Sim-Selley LJ, Selley DE, Gold SJ, Nestler EJ |title=Essential role for RGS9 in opiate action |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=100 |issue=23 |pages=13656–61 |date=November 2003 |pmid=14595021 |pmc=263869 |doi=10.1073/pnas.2232594100 |url=}}</ref><ref name="pmid15617734">{{cite journal |vauthors=Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, Garzón J |title=RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Galphaz subunits |journal=Neuropharmacology |volume=48 |issue=1 |pages=134–50 |date=January 2005 |pmid=15617734 |doi=10.1016/j.neuropharm.2004.08.016 |url=}}</ref><ref name="pmid15632124">{{cite journal |vauthors=Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P |title=Activation of mu-opioid receptors transfers control of Galpha subunits to the regulator of G-protein signaling RGS9-2: role in receptor desensitization |journal=The Journal of Biological Chemistry |volume=280 |issue=10 |pages=8951–60 |date=March 2005 |pmid=15632124 |doi=10.1074/jbc.M407005200 |url=}}</ref><ref name="pmid17725581">{{cite journal |vauthors=Psifogeorgou K, Papakosta P, Russo SJ, Neve RL, Kardassis D, Gold SJ, Zachariou V |title=RGS9-2 is a negative modulator of mu-opioid receptor function |journal=Journal of Neurochemistry |volume=103 |issue=2 |pages=617–25 |date=October 2007 |pmid=17725581 |doi=10.1111/j.1471-4159.2007.04812.x |url=}}</ref><ref name="pmid17880927">{{cite journal |vauthors=Hooks SB, Martemyanov K, Zachariou V |title=A role of RGS proteins in drug addiction |journal=[[Biochemical Pharmacology (journal)|Biochemical Pharmacology]] |volume=75 |issue=1 |pages=76–84 |date=January 2008 |pmid=17880927 |doi=10.1016/j.bcp.2007.07.045 |url=}}</ref><ref name="pmid19211160">{{cite journal |vauthors=Traynor JR, Terzi D, Caldarone BJ, Zachariou V |title=RGS9-2: probing an intracellular modulator of behavior as a drug target |journal=Trends in Pharmacological Sciences |volume=30 |issue=3 |pages=105–11 |date=March 2009 |pmid=19211160 |doi=10.1016/j.tips.2008.11.006 |url= |pmc=3394094}}</ref> RGS9-deficient mice exhibit some motor and cognitive difficulties however, so inhibition of this protein is likely to cause similar side effects.<ref name="pmid18073128">{{cite journal |vauthors=Blundell J, Hoang CV, Potts B, Gold SJ, Powell CM |title=Motor coordination deficits in mice lacking RGS9 |journal=Brain Research |volume=1190 |issue= |pages=78–85 |date=January 2008 |pmid=18073128 |pmc=2241663 |doi=10.1016/j.brainres.2007.11.017 |url=}}</ref> | RGS9-2 is of particular interest as the most important RGS protein involved in terminating signalling by the [[mu opioid receptor]] (although [[RGS4]] and [[RGS17]] are also involved), and is thought to be important in the development of tolerance to opioid drugs.<ref name="pmid11207815">{{cite journal |vauthors=Garzón J, Rodríguez-Díaz M, López-Fando A, Sánchez-Blázquez P |title=RGS9 proteins facilitate acute tolerance to mu-opioid effects |journal=The European Journal of Neuroscience |volume=13 |issue=4 |pages=801–11 |date=February 2001 |pmid=11207815 |doi= 10.1046/j.0953-816x.2000.01444.x|url=|hdl=10261/154868 }}</ref><ref name="pmid14595021">{{cite journal |vauthors=Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R, Berton O, Neve RL, Sim-Selley LJ, Selley DE, Gold SJ, Nestler EJ |title=Essential role for RGS9 in opiate action |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=100 |issue=23 |pages=13656–61 |date=November 2003 |pmid=14595021 |pmc=263869 |doi=10.1073/pnas.2232594100 |url=|bibcode=2003PNAS..10013656Z }}</ref><ref name="pmid15617734">{{cite journal |vauthors=Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, Garzón J |title=RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Galphaz subunits |journal=Neuropharmacology |volume=48 |issue=1 |pages=134–50 |date=January 2005 |pmid=15617734 |doi=10.1016/j.neuropharm.2004.08.016 |url=}}</ref><ref name="pmid15632124">{{cite journal |vauthors=Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P |title=Activation of mu-opioid receptors transfers control of Galpha subunits to the regulator of G-protein signaling RGS9-2: role in receptor desensitization |journal=The Journal of Biological Chemistry |volume=280 |issue=10 |pages=8951–60 |date=March 2005 |pmid=15632124 |doi=10.1074/jbc.M407005200 |url=}}</ref><ref name="pmid17725581">{{cite journal |vauthors=Psifogeorgou K, Papakosta P, Russo SJ, Neve RL, Kardassis D, Gold SJ, Zachariou V |title=RGS9-2 is a negative modulator of mu-opioid receptor function |journal=Journal of Neurochemistry |volume=103 |issue=2 |pages=617–25 |date=October 2007 |pmid=17725581 |doi=10.1111/j.1471-4159.2007.04812.x |url=|bibcode=2006JNeur..26.9606G }}</ref><ref name="pmid17880927">{{cite journal |vauthors=Hooks SB, Martemyanov K, Zachariou V |title=A role of RGS proteins in drug addiction |journal=[[Biochemical Pharmacology (journal)|Biochemical Pharmacology]] |volume=75 |issue=1 |pages=76–84 |date=January 2008 |pmid=17880927 |doi=10.1016/j.bcp.2007.07.045 |url=}}</ref><ref name="pmid19211160">{{cite journal |vauthors=Traynor JR, Terzi D, Caldarone BJ, Zachariou V |title=RGS9-2: probing an intracellular modulator of behavior as a drug target |journal=Trends in Pharmacological Sciences |volume=30 |issue=3 |pages=105–11 |date=March 2009 |pmid=19211160 |doi=10.1016/j.tips.2008.11.006 |url= |pmc=3394094}}</ref> RGS9-deficient mice exhibit some motor and cognitive difficulties however, so inhibition of this protein is likely to cause similar side effects.<ref name="pmid18073128">{{cite journal |vauthors=Blundell J, Hoang CV, Potts B, Gold SJ, Powell CM |title=Motor coordination deficits in mice lacking RGS9 |journal=Brain Research |volume=1190 |issue= |pages=78–85 |date=January 2008 |pmid=18073128 |pmc=2241663 |doi=10.1016/j.brainres.2007.11.017 |url=}}</ref> | ||
RGS9 is differentially regulated by Guanine nucleotide-binding protein subunit beta-5 ([[GNB5]]) via the [[DEP domain]] and DEP helical-extension domain in protein stability and membrane anchor association.<ref name=pmid21511947>{{Cite journal | RGS9 is differentially regulated by Guanine nucleotide-binding protein subunit beta-5 ([[GNB5]]) via the [[DEP domain]] and DEP helical-extension domain in protein stability and membrane anchor association.<ref name=pmid21511947>{{Cite journal | ||
Line 31: | Line 31: | ||
| citations = | | citations = | ||
*{{cite journal |vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }} | *{{cite journal |vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }} | ||
*{{cite journal |vauthors=Cowan CW, Fariss RN, Sokal I, etal |title=High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 9 |pages= 5351–6 |year= 1998 |pmid= 9560279 |doi=10.1073/pnas.95.9.5351 | pmc=20264 }} | *{{cite journal |vauthors=Cowan CW, Fariss RN, Sokal I, etal |title=High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 9 |pages= 5351–6 |year= 1998 |pmid= 9560279 |doi=10.1073/pnas.95.9.5351 | pmc=20264 |bibcode=1998PNAS...95.5351C }} | ||
*{{cite journal |vauthors=Granneman JG, Zhai Y, Zhu Z, etal |title=Molecular characterization of human and rat RGS 9L, a novel splice variant enriched in dopamine target regions, and chromosomal localization of the RGS 9 gene |journal=Mol. Pharmacol. |volume=54 |issue= 4 |pages= 687–94 |year= 1998 |pmid= 9765512 |doi= }} | *{{cite journal |vauthors=Granneman JG, Zhai Y, Zhu Z, etal |title=Molecular characterization of human and rat RGS 9L, a novel splice variant enriched in dopamine target regions, and chromosomal localization of the RGS 9 gene |journal=Mol. Pharmacol. |volume=54 |issue= 4 |pages= 687–94 |year= 1998 |pmid= 9765512 |doi= }} | ||
*{{cite journal |vauthors=Zhang K, Howes KA, He W, etal |title=Structure, alternative splicing, and expression of the human RGS9 gene |journal=Gene |volume=240 |issue= 1 |pages= 23–34 |year= 2000 |pmid= 10564809 |doi=10.1016/S0378-1119(99)00393-5 }} | *{{cite journal |vauthors=Zhang K, Howes KA, He W, etal |title=Structure, alternative splicing, and expression of the human RGS9 gene |journal=Gene |volume=240 |issue= 1 |pages= 23–34 |year= 2000 |pmid= 10564809 |doi=10.1016/S0378-1119(99)00393-5 }} | ||
*{{cite journal |vauthors=Yu H, Bondarenko VA, Yamazaki A |title=Inhibition of retinal guanylyl cyclase by the RGS9-1 N-terminus |journal=Biochem. Biophys. Res. Commun. |volume=286 |issue= 1 |pages= 12–9 |year= 2001 |pmid= 11485301 |doi= 10.1006/bbrc.2001.5346 }} | *{{cite journal |vauthors=Yu H, Bondarenko VA, Yamazaki A |title=Inhibition of retinal guanylyl cyclase by the RGS9-1 N-terminus |journal=Biochem. Biophys. Res. Commun. |volume=286 |issue= 1 |pages= 12–9 |year= 2001 |pmid= 11485301 |doi= 10.1006/bbrc.2001.5346 }} | ||
*{{cite journal |vauthors=Hu G, Wensel TG |title=R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 15 |pages= 9755–60 |year= 2002 |pmid= 12119397 |doi= 10.1073/pnas.152094799 | pmc=125004 }} | *{{cite journal |vauthors=Hu G, Wensel TG |title=R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 15 |pages= 9755–60 |year= 2002 |pmid= 12119397 |doi= 10.1073/pnas.152094799 | pmc=125004 |bibcode=2002PNAS...99.9755H }} | ||
*{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M }} | ||
*{{cite journal |vauthors=Martemyanov KA, Lishko PV, Calero N, etal |title=The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo |journal=J. Neurosci. |volume=23 |issue= 32 |pages= 10175–81 |year= 2003 |pmid= 14614075 |doi= }} | *{{cite journal |vauthors=Martemyanov KA, Lishko PV, Calero N, etal |title=The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo |journal=J. Neurosci. |volume=23 |issue= 32 |pages= 10175–81 |year= 2003 |pmid= 14614075 |doi= }} | ||
*{{cite journal |vauthors=Nishiguchi KM, Sandberg MA, Kooijman AC, etal |title=Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation |journal=Nature |volume=427 |issue= 6969 |pages= 75–8 |year= 2004 |pmid= 14702087 |doi= 10.1038/nature02170 }} | *{{cite journal |vauthors=Nishiguchi KM, Sandberg MA, Kooijman AC, etal |title=Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation |journal=Nature |volume=427 |issue= 6969 |pages= 75–8 |year= 2004 |pmid= 14702087 |doi= 10.1038/nature02170 |bibcode=2004Natur.427...75N }} | ||
*{{cite journal |vauthors=Ajit SK, Young KH |title=Enhancement of pheromone response by RGS9 and Gbeta5 in yeast |journal=Biochem. Biophys. Res. Commun. |volume=324 |issue= 2 |pages= 686–91 |year= 2004 |pmid= 15474482 |doi= 10.1016/j.bbrc.2004.09.100 }} | *{{cite journal |vauthors=Ajit SK, Young KH |title=Enhancement of pheromone response by RGS9 and Gbeta5 in yeast |journal=Biochem. Biophys. Res. Commun. |volume=324 |issue= 2 |pages= 686–91 |year= 2004 |pmid= 15474482 |doi= 10.1016/j.bbrc.2004.09.100 }} | ||
*{{cite journal |vauthors=Cheng JY, Luu CD, Yong VH, etal |title=Bradyopsia in an Asian man |journal=Arch. Ophthalmol. |volume=125 |issue= 8 |pages= 1138–40 |year= 2007 |pmid= 17698770 |doi= 10.1001/archopht.125.8.1138 }} | *{{cite journal |vauthors=Cheng JY, Luu CD, Yong VH, etal |title=Bradyopsia in an Asian man |journal=Arch. Ophthalmol. |volume=125 |issue= 8 |pages= 1138–40 |year= 2007 |pmid= 17698770 |doi= 10.1001/archopht.125.8.1138 }} |
Latest revision as of 01:18, 6 January 2019
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Regulator of G-protein signalling 9, also known as RGS9, is a human gene,[1] which codes for a protein involved in regulation of signal transduction inside cells. Members of the RGS family, such as RGS9, are signaling proteins that suppress the activity of G proteins by promoting their deactivation.[supplied by OMIM][1]
There are two splice isoforms of RGS9 with quite different properties and patterns of expression. RGS9-1 is mainly found in the eye and is involved in regulation of phototransduction in rod and cone cells of the retina, while RGS9-2 is found in the brain, and regulates dopamine and opioid signaling in the basal ganglia.[2]
RGS9-2 is of particular interest as the most important RGS protein involved in terminating signalling by the mu opioid receptor (although RGS4 and RGS17 are also involved), and is thought to be important in the development of tolerance to opioid drugs.[3][4][5][6][7][8][9] RGS9-deficient mice exhibit some motor and cognitive difficulties however, so inhibition of this protein is likely to cause similar side effects.[10]
RGS9 is differentially regulated by Guanine nucleotide-binding protein subunit beta-5 (GNB5) via the DEP domain and DEP helical-extension domain in protein stability and membrane anchor association.[11]
References
- ↑ 1.0 1.1 "Entrez Gene: RGS9 regulator of G-protein signalling 9".
- ↑ Martemyanov KA, Krispel CM, Lishko PV, Burns ME, Arshavsky VY (December 2008). "Functional comparison of RGS9 splice isoforms in a living cell". Proceedings of the National Academy of Sciences of the United States of America. 105 (52): 20988–93. Bibcode:2008PNAS..10520988M. doi:10.1073/pnas.0808941106. PMC 2634932. PMID 19098104.
- ↑ Garzón J, Rodríguez-Díaz M, López-Fando A, Sánchez-Blázquez P (February 2001). "RGS9 proteins facilitate acute tolerance to mu-opioid effects". The European Journal of Neuroscience. 13 (4): 801–11. doi:10.1046/j.0953-816x.2000.01444.x. hdl:10261/154868. PMID 11207815.
- ↑ Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R, Berton O, Neve RL, Sim-Selley LJ, Selley DE, Gold SJ, Nestler EJ (November 2003). "Essential role for RGS9 in opiate action". Proceedings of the National Academy of Sciences of the United States of America. 100 (23): 13656–61. Bibcode:2003PNAS..10013656Z. doi:10.1073/pnas.2232594100. PMC 263869. PMID 14595021.
- ↑ Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, Garzón J (January 2005). "RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Galphaz subunits". Neuropharmacology. 48 (1): 134–50. doi:10.1016/j.neuropharm.2004.08.016. PMID 15617734.
- ↑ Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P (March 2005). "Activation of mu-opioid receptors transfers control of Galpha subunits to the regulator of G-protein signaling RGS9-2: role in receptor desensitization". The Journal of Biological Chemistry. 280 (10): 8951–60. doi:10.1074/jbc.M407005200. PMID 15632124.
- ↑ Psifogeorgou K, Papakosta P, Russo SJ, Neve RL, Kardassis D, Gold SJ, Zachariou V (October 2007). "RGS9-2 is a negative modulator of mu-opioid receptor function". Journal of Neurochemistry. 103 (2): 617–25. Bibcode:2006JNeur..26.9606G. doi:10.1111/j.1471-4159.2007.04812.x. PMID 17725581.
- ↑ Hooks SB, Martemyanov K, Zachariou V (January 2008). "A role of RGS proteins in drug addiction". Biochemical Pharmacology. 75 (1): 76–84. doi:10.1016/j.bcp.2007.07.045. PMID 17880927.
- ↑ Traynor JR, Terzi D, Caldarone BJ, Zachariou V (March 2009). "RGS9-2: probing an intracellular modulator of behavior as a drug target". Trends in Pharmacological Sciences. 30 (3): 105–11. doi:10.1016/j.tips.2008.11.006. PMC 3394094. PMID 19211160.
- ↑ Blundell J, Hoang CV, Potts B, Gold SJ, Powell CM (January 2008). "Motor coordination deficits in mice lacking RGS9". Brain Research. 1190: 78–85. doi:10.1016/j.brainres.2007.11.017. PMC 2241663. PMID 18073128.
- ↑ Masuho, I.; Wakasugi-Masuho, H.; Posokhova, E. N.; Patton, J. R.; Martemyanov, K. A. (2011). "Type 5 G Protein Subunit (G 5) Controls the Interaction of Regulator of G Protein Signaling 9 (RGS9) with Membrane Anchors". Journal of Biological Chemistry. 286 (24): 21806–21813. doi:10.1074/jbc.M111.241513. PMC 3122235. PMID 21511947.
Further reading
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Cowan CW, Fariss RN, Sokal I, et al. (1998). "High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods". Proc. Natl. Acad. Sci. U.S.A. 95 (9): 5351–6. Bibcode:1998PNAS...95.5351C. doi:10.1073/pnas.95.9.5351. PMC 20264. PMID 9560279.
- Granneman JG, Zhai Y, Zhu Z, et al. (1998). "Molecular characterization of human and rat RGS 9L, a novel splice variant enriched in dopamine target regions, and chromosomal localization of the RGS 9 gene". Mol. Pharmacol. 54 (4): 687–94. PMID 9765512.
- Zhang K, Howes KA, He W, et al. (2000). "Structure, alternative splicing, and expression of the human RGS9 gene". Gene. 240 (1): 23–34. doi:10.1016/S0378-1119(99)00393-5. PMID 10564809.
- Yu H, Bondarenko VA, Yamazaki A (2001). "Inhibition of retinal guanylyl cyclase by the RGS9-1 N-terminus". Biochem. Biophys. Res. Commun. 286 (1): 12–9. doi:10.1006/bbrc.2001.5346. PMID 11485301.
- Hu G, Wensel TG (2002). "R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1". Proc. Natl. Acad. Sci. U.S.A. 99 (15): 9755–60. Bibcode:2002PNAS...99.9755H. doi:10.1073/pnas.152094799. PMC 125004. PMID 12119397.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Martemyanov KA, Lishko PV, Calero N, et al. (2003). "The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo". J. Neurosci. 23 (32): 10175–81. PMID 14614075.
- Nishiguchi KM, Sandberg MA, Kooijman AC, et al. (2004). "Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation". Nature. 427 (6969): 75–8. Bibcode:2004Natur.427...75N. doi:10.1038/nature02170. PMID 14702087.
- Ajit SK, Young KH (2004). "Enhancement of pheromone response by RGS9 and Gbeta5 in yeast". Biochem. Biophys. Res. Commun. 324 (2): 686–91. doi:10.1016/j.bbrc.2004.09.100. PMID 15474482.
- Cheng JY, Luu CD, Yong VH, et al. (2007). "Bradyopsia in an Asian man". Arch. Ophthalmol. 125 (8): 1138–40. doi:10.1001/archopht.125.8.1138. PMID 17698770.
This article on a gene on human chromosome 17 is a stub. You can help Wikipedia by expanding it. |