Mast cell tumor pathophysiology: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
* | * | ||
===Genetics=== | ===Genetics=== | ||
*Mutations in kinases (especially in the tyrosine kinase Kit) and in enzymes and receptors (JAK2, PDGFRα, RASGRP4, Src-kinases, c-Cbl-encoded E3 ligase, histamine H4 receptor) which are essentially involved in the regulation of mast cell activity, | *Mutations in kinases (especially in the tyrosine kinase Kit) and in enzymes and receptors (JAK2, PDGFRα, RASGRP4, Src-kinases, c-Cbl-encoded E3 ligase, histamine H4 receptor) which are essentially involved in the regulation of mast cell activity, are required to establish a clonal mast cell population.<ref name="MolderingsBrettner2011">{{cite journal|last1=Molderings|first1=Gerhard J|last2=Brettner|first2=Stefan|last3=Homann|first3=Jürgen|last4=Afrin|first4=Lawrence B|title=Mast cell activation disease: a concise practical guide for diagnostic workup and therapeutic options|journal=Journal of Hematology & Oncology|volume=4|issue=1|year=2011|pages=10|issn=1756-8722|doi=10.1186/1756-8722-4-10}}</ref> | ||
*Mast cells express a cell surface receptor, [[C-kit]] ([[CD117]]), which is the [[receptor]] for [[stem cell factor]]. In laboratory studies, stem cell factor appears to be important for the proliferation of [[mast cells]]. | *Mast cells express a cell surface receptor, [[C-kit]] ([[CD117]]), which is the [[receptor]] for [[stem cell factor]]. In laboratory studies, stem cell factor appears to be important for the proliferation of [[mast cells]]. | ||
*[[Mutations]] of the [[C-kit|C-kit receptor]], leading to uncontrolled stimulation of the receptor, is a cause for the disease. | *[[Mutations]] of the [[C-kit|C-kit receptor]], leading to uncontrolled stimulation of the receptor, is a cause for the disease. |
Revision as of 18:49, 7 March 2019
Mast cell tumor Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Mast cell tumor pathophysiology On the Web |
American Roentgen Ray Society Images of Mast cell tumor pathophysiology |
Risk calculators and risk factors for Mast cell tumor pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Suveenkrishna Pothuru, M.B,B.S. [2]
Overview
Mast cell tumor arises from the mast cell, which is a type of white blood cell involved in the inflammatory process. The progression to mast cell tumor usually involves the uncontrolled stimulation of the receptor for stem cell factor following mutation of C-kit cell surface receptor. On microscopic histopathological analysis, mast cells in the superficial and mid dermis that are lymphocyte like with dense granular cytoplasm which tend to be more abundant around blood vessels is characteristic finding of mast cell tumor.
Pathophysiology
Mast Cell
- Mast cells are bone marrow derived multi-functional immune cells and are normally found throughout the connective tissue of the body.
- It is a normal component of the immune system and as it releases histamine it is associated with allergic reactions.
- Mast cell granules contain histamine, heparin, platelet-activating factor, leukotrienes, prostaglandins, cytokines and proteases.
- It is thought that the effects of mast cell tumor relate at least in part to mediator release.
- The clinical features of mast cell tumor arise from release of mast cell mediators, inflitration of tissues by mast cells, local build-up of mast cells and associated neoplasms.
- In systemic mastocytosis, abnormal proliferation and microscopic infiltration of mast cells involves skin, bone marrow, gastrointestinal tract, liver, and spleen.
Genetics
- Mutations in kinases (especially in the tyrosine kinase Kit) and in enzymes and receptors (JAK2, PDGFRα, RASGRP4, Src-kinases, c-Cbl-encoded E3 ligase, histamine H4 receptor) which are essentially involved in the regulation of mast cell activity, are required to establish a clonal mast cell population.[1]
- Mast cells express a cell surface receptor, C-kit (CD117), which is the receptor for stem cell factor. In laboratory studies, stem cell factor appears to be important for the proliferation of mast cells.
- Mutations of the C-kit receptor, leading to uncontrolled stimulation of the receptor, is a cause for the disease.
- The D816V point mutation within the tyrosine kinase Kit (C-kit) that is detected in 80% of cases is considered a driver mutation causing the permanent receptor activation and consequent proliferation, and thus neoplastic expansion of the mutated mast cell clone.[2]
- The following genes are involved in the pathogenesis of mast cell tumor:[3][4][5]
Microscopic Pathology
- Lymphocyte-like with more cytoplasm that is granular
- Cells may have spindled or stellate morphology
- Tend to be more abundant around vessels
- Eosinophils may present
-
Micrograph showing a mast cell tumor.[8]
References
- ↑ Molderings, Gerhard J; Brettner, Stefan; Homann, Jürgen; Afrin, Lawrence B (2011). "Mast cell activation disease: a concise practical guide for diagnostic workup and therapeutic options". Journal of Hematology & Oncology. 4 (1): 10. doi:10.1186/1756-8722-4-10. ISSN 1756-8722.
- ↑ Adolf, Stefanie; Millonig, Gunda; Seitz, Helmut Karl; Reiter, Andreas; Schirmacher, Peter; Longerich, Thomas; Mueller, Sebastian (2012). "Systemic Mastocytosis: A Rare Case of Increased Liver Stiffness". Case Reports in Hepatology. 2012: 1–6. doi:10.1155/2012/728172. ISSN 2090-6587.
- ↑ Schwaab J, Schnittger S, Sotlar K, Walz C, Fabarius A, Pfirrmann M, Kohlmann A, Grossmann V, Meggendorfer M, Horny HP, Valent P, Jawhar M, Teichmann M, Metzgeroth G, Erben P, Ernst T, Hochhaus A, Haferlach T, Hofmann WK, Cross NC, Reiter A (October 2013). "Comprehensive mutational profiling in advanced systemic mastocytosis". Blood. 122 (14): 2460–6. doi:10.1182/blood-2013-04-496448. PMID 23958953.
- ↑ Traina F, Visconte V, Jankowska AM, Makishima H, O'Keefe CL, Elson P, Han Y, Hsieh FH, Sekeres MA, Mali RS, Kalaycio M, Lichtin AE, Advani AS, Duong HK, Copelan E, Kapur R, Olalla Saad ST, Maciejewski JP, Tiu RV (2012). "Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis". PLoS ONE. 7 (8): e43090. doi:10.1371/journal.pone.0043090. PMC 3419680. PMID 22905207.
- ↑ Chan EC, Bai Y, Bandara G, Simakova O, Brittain E, Scott L, Dyer KD, Klion AD, Maric I, Gilfillan AM, Metcalfe DD, Wilson TM (October 2013). "KIT GNNK splice variants: expression in systemic mastocytosis and influence on the activating potential of the D816V mutation in mast cells". Exp. Hematol. 41 (10): 870–881.e2. doi:10.1016/j.exphem.2013.05.005. PMID 23743299.
- ↑ Berezowska S, Flaig MJ, Ruëff F, Walz C, Haferlach T, Krokowski M, Kerler R, Petat-Dutter K, Horny HP, Sotlar K (January 2014). "Adult-onset mastocytosis in the skin is highly suggestive of systemic mastocytosis". Mod. Pathol. 27 (1): 19–29. doi:10.1038/modpathol.2013.117. PMID 23807778.
- ↑ Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM, Hanson CA, Pardanani A, Gilliland DG, Levine RL (July 2009). "Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML". Leukemia. 23 (7): 1343–5. doi:10.1038/leu.2009.59. PMC 4654626. PMID 19295549.
- ↑ 8.0 8.1 Mastocytosis. Libre Pathology. http://librepathology.org/wiki/Mastocytosis accessed on March 1st, 2016