Hepatopulmonary syndrome overview: Difference between revisions

Jump to navigation Jump to search
Line 11: Line 11:


==Pathophysiology==
==Pathophysiology==
The exact pathogenesis of hepatopulmonary syndrome is not fully understood. Pulmonary microvascular dilation and angiogenesis are two central pathogenic features that drive abnormal pulmonary gas exchange in experimental hepatopulmonary syndrome, and thus might underlie hepatopulmonary syndrome in humans. It is thought that hepatopulmonary syndrome is the result of microscopic intrapulmonary arteriovenous dilatations due to either increased liver production or decreased the liver clearance of [[Vasodilator|vasodilators]], possibly involving [[nitric oxide]]. The progression to hepatopulmonary syndrome is believed that involves the [[Nitric oxide|nitric oxid]]<nowiki/>e [[metabolism]]. The dilation of these blood vessels causes overperfusion relative to ventilation, leading to [[ventilation-perfusion mismatch]] and [[hypoxemia]]. There is an increased gradient between the partial pressure of [[oxygen]] in the alveoli of the lung and adjacent arteries (alveolar-arterial [A-a] gradient) while breathing room air. Patients with hepatopulmonary syndrome have [[platypnea]]-orthodeoxia [[syndrome]] (POS); that is, because intrapulmonary vascular dilations (IPVDs) predominate in the bases of the [[Lung|lungs]], standing worsens [[hypoxemia]] (orthodeoxia)/dyspnea (platypnea) and the [[supine position]] improves [[oxygenation]] as blood is redistributed from the bases to the apices. Additionally, late in [[cirrhosis]], it is common to develop [[high output failure]], which would lead to less time in [[Capillary|capillaries]] per [[red blood cell]], exacerbating the [[hypoxemia]]. As discussed below a variety of angiogenesis-related genes polymorphism has been linked to hepatopulmonary syndrome. Increased levels of endothelin-1 in cirrhotic patients have been correlated with intrapulmonary molecular and gas exchange abnormalities, hypothesizing a probable contribution to the pathogenesis of hepatopulmonary syndrome.


==Causes==
==Causes==
 
<br />
==Differentiating Hepatopulmonary Syndrome from Other Diseases==
==Differentiating Hepatopulmonary Syndrome from Other Diseases==
 
<br />
==Epidemiology and Demographics==
==Epidemiology and Demographics==
 
<br />
==Risk Factors==
==Risk Factors==
 
<br />
==Screening==
==Screening==
 
<br />
==Natural History, Complications, and Prognosis==
==Natural History, Complications, and Prognosis==



Revision as of 17:27, 6 September 2019

Hepatopulmonary syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hepatopulmonary syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hepatopulmonary syndrome overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hepatopulmonary syndrome overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hepatopulmonary syndrome overview

CDC on Hepatopulmonary syndrome overview

Hepatopulmonary syndrome overview in the news

Blogs on Hepatopulmonary syndrome overview

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Hepatopulmonary syndrome overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Soroush Seifirad, M.D.[2]

Overview

Historical Perspective

In 1884, Flückiger was the first to report the association between liver dysfunction and the development of hypoxemia. (Flückiger M. Vorkommen von trommelschlagel-formigen fingerendphalangen ohne chronische veranderungeng an den lungen oder am herzen. Wien Med Wochenschr. 1884;34:1457.) The term "hepatopulmonary syndrome" was first suggested by Kennedy and Knudson almost 100 years later,in 1977 during describing a patient with the classic findings of hepatopulmonary syndrome.

Classification

There is no established system for the classification of hepatopulmonary syndrome. Nevertheless, HPS can be classified in term of severity based on atrial blood gas analysis.

Pathophysiology

The exact pathogenesis of hepatopulmonary syndrome is not fully understood. Pulmonary microvascular dilation and angiogenesis are two central pathogenic features that drive abnormal pulmonary gas exchange in experimental hepatopulmonary syndrome, and thus might underlie hepatopulmonary syndrome in humans. It is thought that hepatopulmonary syndrome is the result of microscopic intrapulmonary arteriovenous dilatations due to either increased liver production or decreased the liver clearance of vasodilators, possibly involving nitric oxide. The progression to hepatopulmonary syndrome is believed that involves the nitric oxide metabolism. The dilation of these blood vessels causes overperfusion relative to ventilation, leading to ventilation-perfusion mismatch and hypoxemia. There is an increased gradient between the partial pressure of oxygen in the alveoli of the lung and adjacent arteries (alveolar-arterial [A-a] gradient) while breathing room air. Patients with hepatopulmonary syndrome have platypnea-orthodeoxia syndrome (POS); that is, because intrapulmonary vascular dilations (IPVDs) predominate in the bases of the lungs, standing worsens hypoxemia (orthodeoxia)/dyspnea (platypnea) and the supine position improves oxygenation as blood is redistributed from the bases to the apices. Additionally, late in cirrhosis, it is common to develop high output failure, which would lead to less time in capillaries per red blood cell, exacerbating the hypoxemia. As discussed below a variety of angiogenesis-related genes polymorphism has been linked to hepatopulmonary syndrome. Increased levels of endothelin-1 in cirrhotic patients have been correlated with intrapulmonary molecular and gas exchange abnormalities, hypothesizing a probable contribution to the pathogenesis of hepatopulmonary syndrome.

Causes


Differentiating Hepatopulmonary Syndrome from Other Diseases


Epidemiology and Demographics


Risk Factors


Screening


Natural History, Complications, and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

References