Angiosarcoma: Difference between revisions

Jump to navigation Jump to search
Sahar Memar Montazerin (talk | contribs)
No edit summary
Sahar Memar Montazerin (talk | contribs)
No edit summary
Line 230: Line 230:
*Multicentric lesions
*Multicentric lesions
===MRI===
===MRI===
On MRI, findings of angiosarcoma may include:<ref>{{Cite journal
On MRI, findings of angiosarcoma may include:<ref name="pmid28471264">{{cite journal |vauthors=Gaballah AH, Jensen CT, Palmquist S, Pickhardt PJ, Duran A, Broering G, Elsayes KM |title=Angiosarcoma: clinical and imaging features from head to toe |journal=Br J Radiol |volume=90 |issue=1075 |pages=20170039 |date=July 2017 |pmid=28471264 |pmc=5594986 |doi=10.1259/bjr.20170039 |url=}}</ref>
| author = [[Ayman H. Gaballah]], [[Corey T. Jensen]], [[Sarah Palmquist]], [[Perry J. Pickhardt]], [[Alper Duran]], [[Gregory Broering]] & [[Khaled M. Elsayes]]
| title = Angiosarcoma: clinical and imaging features from head to toe
| journal = [[The British journal of radiology]]
| volume = 90
| issue = 1075
| pages = 20170039
| year = 2017
| month = July
| doi = 10.1259/bjr.20170039
| pmid = 28471264
}}</ref>
*T1/T2: heterogeneous areas of hyperintensity suggestive of a mixed tumour and [[hemorrhage]]
*T1/T2: heterogeneous areas of hyperintensity suggestive of a mixed tumour and [[hemorrhage]]
*T1 C+ (Gd): heterogeneous enhancement
*T1 C+ (Gd): heterogeneous enhancement
Line 250: Line 239:
== Treatment ==
== Treatment ==
=== Medical Therapy ===
=== Medical Therapy ===
* The role of adjuvant chemotherapy, is unclear. Adjuvant chemotherapy and/or radiotheray provide less mutilating surgery, and for patients with unresectable tumors or those who refuse surgery is an option.<ref>{{Cite journal
* The role of adjuvant chemotherapy, is unclear. Adjuvant chemotherapy and/or radiotheray provide less mutilating surgery, and for patients with unresectable tumors or those who refuse surgery is an option.<ref name="pmid20537949">{{cite journal |vauthors=Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ |title=Angiosarcoma |journal=Lancet Oncol. |volume=11 |issue=10 |pages=983–91 |date=October 2010 |pmid=20537949 |doi=10.1016/S1470-2045(10)70023-1 |url=}}</ref><ref name="pmid20485141">{{cite journal |vauthors=Lahat G, Dhuka AR, Hallevi H, Xiao L, Zou C, Smith KD, Phung TL, Pollock RE, Benjamin R, Hunt KK, Lazar AJ, Lev D |title=Angiosarcoma: clinical and molecular insights |journal=Ann. Surg. |volume=251 |issue=6 |pages=1098–106 |date=June 2010 |pmid=20485141 |doi=10.1097/SLA.0b013e3181dbb75a |url=}}</ref>
| author = [[Robin J. Young]], [[Nicola J. Brown]], [[Malcolm W. Reed]], [[David Hughes]] & [[Penella J. Woll]]
*Since angiosarcomas are histologically anthracycline-sensitive, then initial systemic chemotherapy for unresectable and/or metastatic angiosarcomas include doxorubicin-based therapy with or without ifosfamide.<ref name="pmid21566149">{{cite journal |vauthors=Penel N, Italiano A, Ray-Coquard I, Chaigneau L, Delcambre C, Robin YM, Bui B, Bertucci F, Isambert N, Cupissol D, Bompas E, Bay JO, Duffaud F, Guillemet C, Blay JY |title=Metastatic angiosarcomas: doxorubicin-based regimens, weekly paclitaxel and metastasectomy significantly improve the outcome |journal=Ann. Oncol. |volume=23 |issue=2 |pages=517–23 |date=February 2012 |pmid=21566149 |doi=10.1093/annonc/mdr138 |url=}}</ref>
| title = Angiosarcoma
*However, taxane-based regimen may be preffered for initial therapy.Paclitaxel is effective for advanced angiosarcoma.<ref name="pmid15948172">{{cite journal |vauthors=Skubitz KM, Haddad PA |title=Paclitaxel and pegylated-liposomal doxorubicin are both active in angiosarcoma |journal=Cancer |volume=104 |issue=2 |pages=361–6 |date=July 2005 |pmid=15948172 |doi=10.1002/cncr.21140 |url=}}</ref>
| journal = [[The Lancet. Oncology]]
*Gemcitabine-based regimen is preferable to doxorubicin with or without ifosfamide for patients with significant clinical haert failure, due to heart-toxicity of doxorubicin.<ref name="pmid28794805">{{cite journal |vauthors=In GK, Hu JS, Tseng WW |title=Treatment of advanced, metastatic soft tissue sarcoma: latest evidence and clinical considerations |journal=Ther Adv Med Oncol |volume=9 |issue=8 |pages=533–550 |date=August 2017 |pmid=28794805 |pmc=5524246 |doi=10.1177/1758834017712963 |url=}}</ref>
| volume = 11
*In addition, some vascular biologic molecules, with antiangiogenic characteristics including bevacizumab, sunitinib, and sorafenib, and with or without cytotoxic chemotherapy have shown dramatic responses in a small number of angiosarcoma patients.<ref name="pmid27274393">{{cite journal |vauthors=Vo KT, Matthay KK, DuBois SG |title=Targeted antiangiogenic agents in combination with cytotoxic chemotherapy in preclinical and clinical studies in sarcoma |journal=Clin Sarcoma Res |volume=6 |issue= |pages=9 |date=2016 |pmid=27274393 |pmc=4896001 |doi=10.1186/s13569-016-0049-z |url=}}</ref>
| issue = 10
| pages = 983–991
| year = 2010
| month = October
| doi = 10.1016/S1470-2045(10)70023-1
| pmid = 20537949
}}</ref><ref>{{Cite journal
| author = [[Guy Lahat]], [[Asha R. Dhuka]], [[Hen Hallevi]], [[Lianchun Xiao]], [[Changye Zou]], [[Kerrington D. Smith]], [[Thuy L. Phung]], [[Raphael E. Pollock]], [[Robert Benjamin]], [[Kelly K. Hunt]], [[Alexander J. Lazar]] & [[Dina Lev]]
| title = Angiosarcoma: clinical and molecular insights
| journal = [[Annals of surgery]]
| volume = 251
| issue = 6
| pages = 1098–1106
| year = 2010
| month = June
| doi = 10.1097/SLA.0b013e3181dbb75a
| pmid = 20485141
}}</ref>
 
*Since angiosarcomas are histologically anthracycline-sensitive, then initial systemic chemotherapy for unresectable and/or metastatic angiosarcomas include doxorubicin-based therapy with or without ifosfamide.<ref>{{Cite journal
| author = [[N. Penel]], [[A. Italiano]], [[I. Ray-Coquard]], [[L. Chaigneau]], [[C. Delcambre]], [[Y. M. Robin]], [[B. Bui]], [[F. Bertucci]], [[N. Isambert]], [[D. Cupissol]], [[E. Bompas]], [[J. O. Bay]], [[F. Duffaud]], [[C. Guillemet]] & [[J. Y. Blay]]
| title = Metastatic angiosarcomas: doxorubicin-based regimens, weekly paclitaxel and metastasectomy significantly improve the outcome
| journal = [[Annals of oncology : official journal of the European Society for Medical Oncology]]
| volume = 23
| issue = 2
| pages = 517–523
| year = 2012
| month = February
| doi = 10.1093/annonc/mdr138
| pmid = 21566149
}}</ref>
*However, taxane-based regimen may be preffered for initial therapy.Paclitaxel is effective for advanced angiosarcoma.<ref>{{Cite journal
| author = [[Keith M. Skubitz]] & [[Philip A. Haddad]]
| title = Paclitaxel and pegylated-liposomal doxorubicin are both active in angiosarcoma
| journal = [[Cancer]]
| volume = 104
| issue = 2
| pages = 361–366
| year = 2005
| month = July
| doi = 10.1002/cncr.21140
| pmid = 15948172
}}</ref>
*Gemcitabine-based regimen is preferable to doxorubicin with or without ifosfamide for patients with significant clinical haert failure, due to heart-toxicity of doxorubicin.<ref>{{Cite journal
| author = [[Gino K. In]], [[James S. Hu]] & [[William W. Tseng]]
| title = Treatment of advanced, metastatic soft tissue sarcoma: latest evidence and clinical considerations
| journal = [[Therapeutic advances in medical oncology]]
| volume = 9
| issue = 8
| pages = 533–550
| year = 2017
| month = August
| doi = 10.1177/1758834017712963
| pmid = 28794805
}}</ref>
*In addition, some vascular biologic molecules, with antiangiogenic characteristics including bevacizumab, sunitinib, and sorafenib, and with or without cytotoxic chemotherapy have shown dramatic responses in a small number of angiosarcoma patients.<ref>{{Cite journal
| author = [[Kieuhoa T. Vo]], [[Katherine K. Matthay]] & [[Steven G. DuBois]]
| title = Targeted antiangiogenic agents in combination with cytotoxic chemotherapy in preclinical and clinical studies in sarcoma
| journal = [[Clinical sarcoma research]]
| volume = 6
| pages = 9
| year = 2016
| month =  
| doi = 10.1186/s13569-016-0049-z
| pmid = 27274393
}}</ref>
 
=== Surgery ===
=== Surgery ===
 
* The mainstay of treatment for angiosarcoma is complete surgical resection with wide margins for local and locoregional disease in combination with preoperative or postoperative radiotherapy.<ref name="pmid7977971">{{cite journal |vauthors=Lydiatt WM, Shaha AR, Shah JP |title=Angiosarcoma of the head and neck |journal=Am. J. Surg. |volume=168 |issue=5 |pages=451–4 |date=November 1994 |pmid=7977971 |doi=10.1016/s0002-9610(05)80097-2 |url=}}</ref><ref name="pmid27182479">{{cite journal |vauthors=Arifi S, Belbaraka R, Rahhali R, Ismaili N |title=Treatment of Adult Soft Tissue Sarcomas: An Overview |journal=Rare Cancers Ther |volume=3 |issue= |pages=69–87 |date=2015 |pmid=27182479 |pmc=4837937 |doi=10.1007/s40487-015-0011-x |url=}}</ref>
* The mainstay of treatment for angiosarcoma is complete surgical resection with wide margins for local and locoregional disease in combination with preoperative or postoperative radiotherapy.<ref>{{Cite journal
| author = [[W. M. Lydiatt]], [[A. R. Shaha]] & [[J. P. Shah]]
| title = Angiosarcoma of the head and neck
| journal = [[American journal of surgery]]
| volume = 168
| issue = 5
| pages = 451–454
| year = 1994
| month = November
| pmid = 7977971
}}</ref><ref>{{Cite journal
| author = [[Samia Arifi]], [[Rhizlan Belbaraka]], [[Rabie Rahhali]] & [[Nabil Ismaili]]
| title = Treatment of Adult Soft Tissue Sarcomas: An Overview
| journal = [[Rare cancers and therapy]]
| volume = 3
| pages = 69–87
| year = 2015
| month =  
| doi = 10.1007/s40487-015-0011-x
| pmid = 27182479
}}</ref>
 
*Surgical resection in combination with [[radiation therapy]] is the treatment of choice for small angiosarcomas.<ref name="pmid20537949">{{cite journal |vauthors=Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ |title=Angiosarcoma |journal=Lancet Oncol. |volume=11 |issue=10 |pages=983–91 |year=2010 |pmid=20537949 |doi=10.1016/S1470-2045(10)70023-1 |url=}}</ref>
*Surgical resection in combination with [[radiation therapy]] is the treatment of choice for small angiosarcomas.<ref name="pmid20537949">{{cite journal |vauthors=Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ |title=Angiosarcoma |journal=Lancet Oncol. |volume=11 |issue=10 |pages=983–91 |year=2010 |pmid=20537949 |doi=10.1016/S1470-2045(10)70023-1 |url=}}</ref>
*Complete surgical resection with wide margins is preferred for local and locoregional angiosarcoma.<ref name="pmid20537949">{{cite journal |vauthors=Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ |title=Angiosarcoma |journal=Lancet Oncol. |volume=11 |issue=10 |pages=983–91 |year=2010 |pmid=20537949 |doi=10.1016/S1470-2045(10)70023-1 |url=}}</ref> Owing to the tendency for local infiltration, surgical resection should be associated with preoperative or postoperative radiotherapy.<ref>{{Cite journal
*Complete surgical resection with wide margins is preferred for local and locoregional angiosarcoma.<ref name="pmid20537949">{{cite journal |vauthors=Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ |title=Angiosarcoma |journal=Lancet Oncol. |volume=11 |issue=10 |pages=983–91 |year=2010 |pmid=20537949 |doi=10.1016/S1470-2045(10)70023-1 |url=}}</ref> Owing to the tendency for local infiltration, surgical resection should be associated with preoperative or postoperative radiotherapy.<ref name="pmid20960566">{{cite journal |vauthors=Guadagnolo BA, Zagars GK, Araujo D, Ravi V, Shellenberger TD, Sturgis EM |title=Outcomes after definitive treatment for cutaneous angiosarcoma of the face and scalp |journal=Head Neck |volume=33 |issue=5 |pages=661–7 |date=May 2011 |pmid=20960566 |pmc=4090937 |doi=10.1002/hed.21513 |url=}}</ref>
| author = [[B. Ashleigh Guadagnolo]], [[Gunar K. Zagars]], [[Dejka Araujo]], [[Vinod Ravi]], [[Thomas D. Shellenberger]] & [[Erich M. Sturgis]]
*Surgery is not recommended on patients with large sized angiosarcomas. The recurrence rate of angiosarcoma after surgery is 80%.It usually occures after a median of six months locally or distantly and the three-year disease-free and overall survival rates both are low.<ref name="pmid23428947">{{cite journal |vauthors=Buehler D, Rice SR, Moody JS, Rush P, Hafez GR, Attia S, Longley BJ, Kozak KR |title=Angiosarcoma outcomes and prognostic factors: a 25-year single institution experience |journal=Am. J. Clin. Oncol. |volume=37 |issue=5 |pages=473–9 |date=October 2014 |pmid=23428947 |pmc=3664266 |doi=10.1097/COC.0b013e31827e4e7b |url=}}</ref><ref name="pmid22466664">{{cite journal |vauthors=Seinen JM, Styring E, Verstappen V, Vult von Steyern F, Rydholm A, Suurmeijer AJ, Hoekstra HJ |title=Radiation-associated angiosarcoma after breast cancer: high recurrence rate and poor survival despite surgical treatment with R0 resection |journal=Ann. Surg. Oncol. |volume=19 |issue=8 |pages=2700–6 |date=August 2012 |pmid=22466664 |pmc=3404270 |doi=10.1245/s10434-012-2310-x |url=}}</ref>
| title = Outcomes after definitive treatment for cutaneous angiosarcoma of the face and scalp
| journal = [[Head & neck]]
| volume = 33
| issue = 5
| pages = 661–667
| year = 2011
| month = May
| doi = 10.1002/hed.21513
| pmid = 20960566
}}</ref>
 
*Surgery is not recommended on patients with large sized angiosarcomas. The recurrence rate of angiosarcoma after surgery is 80%.It usually occures after a median of six months locally or distantly and the three-year disease-free and overall survival rates both are low.<ref>{{Cite journal
| author = [[Darya Buehler]], [[Stephanie R. Rice]], [[John S. Moody]], [[Patrick Rush]], [[Gholam-Reza Hafez]], [[Steven Attia]], [[B. Jack Longley]] & [[Kevin R. Kozak]]
| title = Angiosarcoma outcomes and prognostic factors: a 25-year single institution experience
| journal = [[American journal of clinical oncology]]
| volume = 37
| issue = 5
| pages = 473–479
| year = 2014
| month = October
| doi = 10.1097/COC.0b013e31827e4e7b
| pmid = 23428947
}}</ref><ref>{{Cite journal
| author = [[Jojanneke M. Seinen]], [[Emelie Styring]], [[Vincent Verstappen]], [[Fredrik Vult von Steyern]], [[Anders Rydholm]], [[Albert J. H. Suurmeijer]] & [[Harald J. Hoekstra]]
| title = Radiation-associated angiosarcoma after breast cancer: high recurrence rate and poor survival despite surgical treatment with R0 resection
| journal = [[Annals of surgical oncology]]
| volume = 19
| issue = 8
| pages = 2700–2706
| year = 2012
| month = August
| doi = 10.1245/s10434-012-2310-x
| pmid = 22466664
}}</ref>
====Primary Prevention====
====Primary Prevention====
There are no [[Primary prevention|primary preventive]] measures available for angiosarcoma.
There are no [[Primary prevention|primary preventive]] measures available for angiosarcoma.

Revision as of 14:23, 15 October 2019

WikiDoc Resources for Angiosarcoma

Articles

Most recent articles on Angiosarcoma

Most cited articles on Angiosarcoma

Review articles on Angiosarcoma

Articles on Angiosarcoma in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Angiosarcoma

Images of Angiosarcoma

Photos of Angiosarcoma

Podcasts & MP3s on Angiosarcoma

Videos on Angiosarcoma

Evidence Based Medicine

Cochrane Collaboration on Angiosarcoma

Bandolier on Angiosarcoma

TRIP on Angiosarcoma

Clinical Trials

Ongoing Trials on Angiosarcoma at Clinical Trials.gov

Trial results on Angiosarcoma

Clinical Trials on Angiosarcoma at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Angiosarcoma

NICE Guidance on Angiosarcoma

NHS PRODIGY Guidance

FDA on Angiosarcoma

CDC on Angiosarcoma

Books

Books on Angiosarcoma

News

Angiosarcoma in the news

Be alerted to news on Angiosarcoma

News trends on Angiosarcoma

Commentary

Blogs on Angiosarcoma

Definitions

Definitions of Angiosarcoma

Patient Resources / Community

Patient resources on Angiosarcoma

Discussion groups on Angiosarcoma

Patient Handouts on Angiosarcoma

Directions to Hospitals Treating Angiosarcoma

Risk calculators and risk factors for Angiosarcoma

Healthcare Provider Resources

Symptoms of Angiosarcoma

Causes & Risk Factors for Angiosarcoma

Diagnostic studies for Angiosarcoma

Treatment of Angiosarcoma

Continuing Medical Education (CME)

CME Programs on Angiosarcoma

International

Angiosarcoma en Espanol

Angiosarcoma en Francais

Business

Angiosarcoma in the Marketplace

Patents on Angiosarcoma

Experimental / Informatics

List of terms related to Angiosarcoma

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Shyam Patel [2]; Associate Editor(s)-in-Chief: Mohsen Basiri M.D.
Synonyms and keywords: Hemangiosarcoma; Pulmonary angiosarcoma; Vascular sarcoma

Overview

Angiosarcoma is a rare malignant vascular neoplasm of endothelial-type cells that line vessel walls. The peak age of incidence appears to be the 7th decade, and men are affected more than women. Angiosarcoma was first described by Dr. Juan Rosai, in 1976. The pathogenesis of angiosarcoma is characterized by a rapid and extensively infiltrating overgrowth of vascular epithelial cells. Angiosarcoma may arise in any part of the body, but is more common in soft tissue than in bone. Common angiosarcoma locations include the head and neck area, kidney, liver, lung, and and the most common site of radiation-induced angiosarcoma development is the breast. The PTPRB/PLCG1 genes are associated with the development of angiosarcoma; mutation of these genes result in aberrant angiogenesis. The imaging modality of choice for diagnosing angiosarcoma will depend on the location. For pulmonary angiosarcoma, the imaging modality of choice is enhanced CT scan. For other types angiosarcoma, the imaging modality of choice is MRI. On CT scan, findings suggestive of angiosarcoma may include vascular invasion, nodular enhancement (common), and a hypoattenuating mass. The mainstay adjuvant therapy for angiosarcoma is a doxorubicin-based regimen. The response rate for chemotherapy in patients with angiosarcoma is poor.

Historical Perspective

Angiosarcoma was first discovered by Dr. Juan Rosai, M.D. and colleagues in 1976.[1]

Classification

  • Angiosarcoma may be classified according to the clinical heterogeneity into two main groups, and every group can be subdivided into subtypes according to the anatomical location and etiology:[2][3][4]
Angiosarcoma
Primary Secondary
Cutaneous Post Radiation Angiosarcoma
Breast Lymphedema-associated Angiosarcoma
Soft tissue and Bone Angiosarcoma due to exposure to mutatgens
Visceral

Pathophysiology

File:AngiosarcomaGross.jpg
Source:Wikimedia commons
  • On microscopic histopathological analysis, characteristic findings of angiosarcoma may include irregular anastomosing vascular spaces lined by endothelial cells.[10]
  • Endothelial cells have hyperchromatic or vesicular nuclei with fast mitotic activity and necrotic spots.[11]
  • The tumor cells in solid area are characterized by a spindled appearance and contain Weibel-Palade bodies.[12]
  • Immunohistochemical staining of spindle cells highlights CD31, CD34 and von-Willebrand factor related antigens which define the vascular origin of tumor cells.[13]

Causes

The most common cause of angiosarcoma appears to be therapeutic radiation, which was a well-recognized cause of hepatic angiosarcoma in the era when the thorium containing contrast agent Thorotrast was employed. Presently, the breast is the most common anatomic site affected by radiation-induced angiosarcoma. Angiosarcomas may arise after exposure to vinyl chloride, although they remain rare tumors even in an exposed population. Angiosarcomas are also observed after lymphedema from any cause, be it surgical, filarial, or congenital, and defined as Stewart-Treves syndrome. Common causes of angiosarcoma include:[5]

Differentiating Angiosarcoma from Other Diseases

Angiosarcoma must be differentiated from other diseases that cause a highly vascular mass or non-healing cutaneous ulcerations such as:

Differentials for Cutaneous Angiosarcoma

Cutaneous angiosarcoma must be differentiated from other diseases with non-healing cutaneous ulcerations such as:[14][15][16]

Differentials for Non-cutaneous Angiosarcoma

Angiosarcoma must be differentiated from other diseases that cause a highly vascular mass such as:[17]

Epidemiology and Demographics

  • In general 2% of soft tissue sarcomas are angiosarcomas, and the incidence of soft tissue sarcoma is about 6 per 100,000 person; on the other words,the incidence of angiosarcomas can be calculated approximately 1.2 per 1,000.000 person.[5][18]
  • Angiosarcoma is more commonly observed among patients aged between 40 to 75 years old.The peak age of incidence appears is the 7th decade,[19]
  • Males are more commonly affected with angiosarcoma than females.[19]
  • The male to female ratio is 2:1.[19]
  • There is no racial predilection for angiosarcoma. however, African-Americans in the U.S are rarely affected.[20]

Risk Factors

Common risk factors in the development of angiosarcoma include:[5]

Natural History, Complications and Prognosis

  • The majority of patients with angiosarcoma remain asymptomatic for years.[5]
  • Early clinical features may include nonspecific symptoms, such as pain, fatigue, malaise, and nausea.
  • If left untreated, the majority of patients with angiosarcoma may rapidly progress to develop metastases.[19]

Common complications of angiosarcoma include:[5]

Diagnosis

Diagnostic Study of Choice

  • There is no single diagnostic study of choice for the diagnosis of angiosarcomas. The imaging modality of choice for angiosarcoma or use of punch biopsy of skin will depend on the anatomic location of lesions.
    • Magnetic resonance imaging (MRI) is the imaging modality of choice for evaluating of suspicious lesions of the extremities, retroperitoneum, or abdominal wall.[21]
    • CT scan is useful in for evaluating of lung, pleural, and mediastinal involvement.
    • An x-ray may be helpful in the diagnosis of bone angiosarcoma. Findings on an x-ray suggestive of diagnostic include solitary lytic lesion, with irregular borders or a mixed lytic-sclerotic pattern.[22]
    • Punch biopsy of cutaneous lsions accompanied with immunohistochemical staining provide accurate findings for diagnosis of cutaneous angiosarcoma. Findings associated with angiosarcoma include irregular anastomosing vascular spaces lined by endothelial cells, and immunohistochemical staining of tumor cells highlights CD31, CD34 and von-Willebrand factor related antigens which define the vascular origin of tumor cells.[10][13]

Staging

According to the American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC) and by Enneking classification, soft tissue sarcomas are classified to different stages based on the primary tumor characteristics, histological grading and the local or distant tumor involvement. Table below provides summarized information regarding staging of angiosarcoma:[23][24]

Stage Grade Site Metastasis
Ia Low grade (G1) Intracompartmental (T1) No metastasis (M0)
Ib Low grade (G1) Extracompartmental (T2) No metastasis (M0)
IIa High grade (G2) Intracompartmental (T1) No metastasis (M0)
IIb High grade (G2) Extracompartmental (T2) No metastasis (M0)
IIIa Low or High grade (G1-G2) Intracompartmental (T1) Metastasis (M1)
IIIb Low or High grade (G1-G2) Extracompartmental (T2) Metastasis (M1)

Symptoms

  • Angiosarcomas occur at different anatomic sites and grow insidiously, then they can present with various misleading symptoms.[25] The most common clinical manifestation is a gradually enlarging, painless mass. [26]Some patients complain of pain or symptoms due to compression of adjacent neurovascular structures that causes pain or edema in an extremity.
  • Primary cutaneous, head and neck and breast angiosarcoma may present with skin thickening, erythema, or skin discoloration.[27][28]
  • Secondary angiosarcomas include radiation-Induced and lymphedema-associated Angiosarcoma have a distinct feature, presenting as single or several ecchymotic maculopapular cutaneous lesions in the radiation field or in areas exposed to chronic lymphedema.[29]

Physical Examination

Patients with angiosarcoma may appear cachectic or normal. In cutaneous angiosarcoma, physical examination findings may include:

Laboratory Findings

  • There are no specific laboratory findings associated with angiosarcoma.

Electrocardiogram

  • There are no ECG findings associated with angiosarcoma.

Echocardiography or Ultrasound

  • On ultrasound imaging, angiosarcoma may have variable features according to the location of the tumor. It may appear as an echogenic, nodular, or lobulated mass.[30]

X-ray

  • There are no x-ray findings associated with angiosarcoma.

Imaging Findings

  • The imaging modality of choice for angiosarcoma will depend on the location.
  • For pulmonary angiosarcoma, the imaging modality of choice is enhanced CT scan.[19] For other types angiosarcoma, the imaging modality of choice is MRI.

CT Scan

On CT, findings of angiosarcoma may include:[19]

  • Vascular invasion
  • Nodular enhancement (common)
  • Hypoattenuating mass
  • Multicentric lesions

MRI

On MRI, findings of angiosarcoma may include:[21]

  • T1/T2: heterogeneous areas of hyperintensity suggestive of a mixed tumour and hemorrhage
  • T1 C+ (Gd): heterogeneous enhancement

Other Imaging Findings

  • There are no other imaging findings associated with angiosarcoma.

Other Diagnostic Studies

  • There are no other diagnostic studies associated with angiosarcoma.

Treatment

Medical Therapy

  • The role of adjuvant chemotherapy, is unclear. Adjuvant chemotherapy and/or radiotheray provide less mutilating surgery, and for patients with unresectable tumors or those who refuse surgery is an option.[5][31]
  • Since angiosarcomas are histologically anthracycline-sensitive, then initial systemic chemotherapy for unresectable and/or metastatic angiosarcomas include doxorubicin-based therapy with or without ifosfamide.[32]
  • However, taxane-based regimen may be preffered for initial therapy.Paclitaxel is effective for advanced angiosarcoma.[33]
  • Gemcitabine-based regimen is preferable to doxorubicin with or without ifosfamide for patients with significant clinical haert failure, due to heart-toxicity of doxorubicin.[34]
  • In addition, some vascular biologic molecules, with antiangiogenic characteristics including bevacizumab, sunitinib, and sorafenib, and with or without cytotoxic chemotherapy have shown dramatic responses in a small number of angiosarcoma patients.[35]

Surgery

  • The mainstay of treatment for angiosarcoma is complete surgical resection with wide margins for local and locoregional disease in combination with preoperative or postoperative radiotherapy.[36][37]
  • Surgical resection in combination with radiation therapy is the treatment of choice for small angiosarcomas.[5]
  • Complete surgical resection with wide margins is preferred for local and locoregional angiosarcoma.[5] Owing to the tendency for local infiltration, surgical resection should be associated with preoperative or postoperative radiotherapy.[38]
  • Surgery is not recommended on patients with large sized angiosarcomas. The recurrence rate of angiosarcoma after surgery is 80%.It usually occures after a median of six months locally or distantly and the three-year disease-free and overall survival rates both are low.[39][40]

Primary Prevention

There are no primary preventive measures available for angiosarcoma.

Secondary Prevention

Once diagnosed and successfully treated, patients with angiosarcoma are followed-up every 3, 6, or 12 months depending on the stage at diagnosis. Follow-up testing for angiosarcoma may include:[5]

References

  1. Barber W, Scriven P, Turner D, Hughes D, Wyld D (2010). "Epithelioid angiosarcoma: Use of angiographic embolisation and radiotherapy to control recurrent haemorrhage". J Surg Case Rep. 2010 (5): 7. doi:10.1093/jscr/2010.5.7. PMC 3649120. PMID 24946325.
  2. Fury MG, Antonescu CR, Van Zee KJ, Brennan MF, Maki RG (2005). "A 14-year retrospective review of angiosarcoma: clinical characteristics, prognostic factors, and treatment outcomes with surgery and chemotherapy". Cancer J. 11 (3): 241–7. PMID 16053668.
  3. Schlemmer M, Reichardt P, Verweij J, Hartmann JT, Judson I, Thyss A, Hogendoorn PC, Marreaud S, Van Glabbeke M, Blay JY (November 2008). "Paclitaxel in patients with advanced angiosarcomas of soft tissue: a retrospective study of the EORTC soft tissue and bone sarcoma group". Eur. J. Cancer. 44 (16): 2433–6. doi:10.1016/j.ejca.2008.07.037. PMID 18771914.
  4. Karanian M, Coindre JM (January 2015). "[Fourth edition of WHO classification tumours of soft tissue]". Ann Pathol (in French). 35 (1): 71–85. doi:10.1016/j.annpat.2014.11.003. PMID 25532684.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ (October 2010). "Angiosarcoma". Lancet Oncol. 11 (10): 983–91. doi:10.1016/S1470-2045(10)70023-1. PMID 20537949.
  6. Amo Y, Masuzawa M, Hamada Y, Katsuoka K (January 2004). "Serum concentrations of vascular endothelial growth factor-D in angiosarcoma patients". Br. J. Dermatol. 150 (1): 160–1. doi:10.1111/j.1365-2133.2004.05751.x. PMID 14746640.
  7. Manner J, Radlwimmer B, Hohenberger P, Mössinger K, Küffer S, Sauer C, Belharazem D, Zettl A, Coindre JM, Hallermann C, Hartmann JT, Katenkamp D, Katenkamp K, Schöffski P, Sciot R, Wozniak A, Lichter P, Marx A, Ströbel P (January 2010). "MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema". Am. J. Pathol. 176 (1): 34–9. doi:10.2353/ajpath.2010.090637. PMC 2797867. PMID 20008140.
  8. Guo T, Zhang L, Chang NE, Singer S, Maki RG, Antonescu CR (January 2011). "Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions". Genes Chromosomes Cancer. 50 (1): 25–33. doi:10.1002/gcc.20827. PMC 3150534. PMID 20949568.
  9. Fernandez AP, Sun Y, Tubbs RR, Goldblum JR, Billings SD (February 2012). "FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations". J. Cutan. Pathol. 39 (2): 234–42. doi:10.1111/j.1600-0560.2011.01843.x. PMID 22121953.
  10. 10.0 10.1 Mittal S, Goswami C, Kanoria N, Bhattacharya A (2007). "Post-irradiation angiosarcoma of bone". J Cancer Res Ther. 3 (2): 96–9. PMID 17998731.
  11. Murphey MD, Fairbairn KJ, Parman LM, Baxter KG, Parsa MB, Smith WS (July 1995). "From the archives of the AFIP. Musculoskeletal angiomatous lesions: radiologic-pathologic correlation". Radiographics. 15 (4): 893–917. doi:10.1148/radiographics.15.4.7569134. PMID 7569134.
  12. Marušić Z, Billings SD (June 2017). "Histopathology of Spindle Cell Vascular Tumors". Surg Pathol Clin. 10 (2): 345–366. doi:10.1016/j.path.2017.01.006. PMID 28477885.
  13. 13.0 13.1 Kiyohara T, Kumakiri M, Kobayashl H, Itoh K, Lao LM, Ohkawara A, Nakmura H (February 2002). "Spindle cell angiosarcoma following irradiation therapy for cervical carcinoma". J. Cutan. Pathol. 29 (2): 96–100. doi:10.1034/j.1600-0560.2002.290206.x. PMID 12150140.
  14. Sinclair SA, Sviland L, Natarajan S (April 1998). "Angiosarcoma arising in a chronically lymphoedematous leg". Br. J. Dermatol. 138 (4): 692–4. doi:10.1046/j.1365-2133.1998.02188.x. PMID 9640382.
  15. de Keizer RJ, de Wolff-Rouendaal D, Nooy MA (2008). "Angiosarcoma of the eyelid and periorbital region. Experience in Leiden with iridium192 brachytherapy and low-dose doxorubicin chemotherapy". Orbit. 27 (1): 5–12. doi:10.1080/01676830601168926. PMID 18307140.
  16. Vora R, Anjaneyan G, Gupta R (November 2014). "Cutaneous angiosarcoma of head and neck". Indian J Dermatol. 59 (6): 632. doi:10.4103/0019-5154.143575. PMC 4248527. PMID 25484419.
  17. Fletcher CD, Beham A, Bekir S, Clarke AM, Marley NJ (October 1991). "Epithelioid angiosarcoma of deep soft tissue: a distinctive tumor readily mistaken for an epithelial neoplasm". Am. J. Surg. Pathol. 15 (10): 915–24. doi:10.1097/00000478-199110000-00001. PMID 1718176.
  18. Ferrari A, Sultan I, Huang TT, Rodriguez-Galindo C, Shehadeh A, Meazza C, Ness KK, Casanova M, Spunt SL (December 2011). "Soft tissue sarcoma across the age spectrum: a population-based study from the Surveillance Epidemiology and End Results database". Pediatr Blood Cancer. 57 (6): 943–9. doi:10.1002/pbc.23252. PMC 4261144. PMID 21793180.
  19. 19.0 19.1 19.2 19.3 19.4 19.5 19.6 Sturgis EM, Potter BO. Sarcomas of the head and neck region. Curr Opin Oncol. 2003 May. 15(3):239-52
  20. Sturgis EM, Potter BO (May 2003). "Sarcomas of the head and neck region". Curr Opin Oncol. 15 (3): 239–52. doi:10.1097/00001622-200305000-00011. PMID 12778019.
  21. 21.0 21.1 Gaballah AH, Jensen CT, Palmquist S, Pickhardt PJ, Duran A, Broering G, Elsayes KM (July 2017). "Angiosarcoma: clinical and imaging features from head to toe". Br J Radiol. 90 (1075): 20170039. doi:10.1259/bjr.20170039. PMC 5594986. PMID 28471264.
  22. Wenger DE, Wold LE (November 2000). "Malignant vascular lesions of bone: radiologic and pathologic features". Skeletal Radiol. 29 (11): 619–31. doi:10.1007/s002560000261. PMID 11201031.
  23. William M. Lydiatt, Snehal G. Patel, Brian O'Sullivan, Margaret S. Brandwein, John A. Ridge, Jocelyn C. Migliacci, Ashley M. Loomis & Jatin P. Shah (2017). "Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual". CA: a cancer journal for clinicians. 67 (2): 122–137. doi:10.3322/caac.21389. PMID 28128848. Unknown parameter |month= ignored (help)
  24. Muhammad Umar Jawad & Sean P. Scully (2010). "In brief: classifications in brief: enneking classification: benign and malignant tumors of the musculoskeletal system". Clinical orthopaedics and related research. 468 (7): 2000–2002. doi:10.1007/s11999-010-1315-7. PMID 20333492. Unknown parameter |month= ignored (help)
  25. Young, Robin J; Brown, Nicola J; Reed, Malcolm W; Hughes, David; Woll, Penella J (2010). "Angiosarcoma". The Lancet Oncology. 11 (10): 983–991. doi:10.1016/S1470-2045(10)70023-1. ISSN 1470-2045.
  26. Ayman H. Gaballah, Corey T. Jensen, Sarah Palmquist, Perry J. Pickhardt, Alper Duran, Gregory Broering & Khaled M. Elsayes (2017). "Angiosarcoma: clinical and imaging features from head to toe". The British journal of radiology. 90 (1075): 20170039. doi:10.1259/bjr.20170039. PMID 28471264. Unknown parameter |month= ignored (help)
  27. R. M. Donnell, P. P. Rosen, P. H. Lieberman, R. J. Kaufman, S. Kay, D. W. Jr Braun & D. W. Kinne (1981). "Angiosarcoma and other vascular tumors of the breast". The American journal of surgical pathology. 5 (7): 629–642. PMID 7199829. Unknown parameter |month= ignored (help)
  28. Ayman H. Gaballah, Corey T. Jensen, Sarah Palmquist, Perry J. Pickhardt, Alper Duran, Gregory Broering & Khaled M. Elsayes (2017). "Angiosarcoma: clinical and imaging features from head to toe". The British journal of radiology. 90 (1075): 20170039. doi:10.1259/bjr.20170039. PMID 28471264. Unknown parameter |month= ignored (help)
  29. Lifang Cui, Jixin Zhang, Xinmin Zhang, Hong Chang, Congling Qu, Jiangying Zhang & Dingrong Zhong (2015). "Angiosarcoma (Stewart-Treves syndrome) in postmastectomy patients: report of 10 cases and review of literature". International journal of clinical and experimental pathology. 8 (9): 11108–11115. PMID 26617830.
  30. Bendel, Emily C.; Maleszewski, Joseph J.; Araoz, Philip A. (2011). "Imaging Sarcomas of the Great Vessels and Heart". Seminars in Ultrasound, CT and MRI. 32 (5): 377–404. doi:10.1053/j.sult.2011.06.001. ISSN 0887-2171.
  31. Lahat G, Dhuka AR, Hallevi H, Xiao L, Zou C, Smith KD, Phung TL, Pollock RE, Benjamin R, Hunt KK, Lazar AJ, Lev D (June 2010). "Angiosarcoma: clinical and molecular insights". Ann. Surg. 251 (6): 1098–106. doi:10.1097/SLA.0b013e3181dbb75a. PMID 20485141.
  32. Penel N, Italiano A, Ray-Coquard I, Chaigneau L, Delcambre C, Robin YM, Bui B, Bertucci F, Isambert N, Cupissol D, Bompas E, Bay JO, Duffaud F, Guillemet C, Blay JY (February 2012). "Metastatic angiosarcomas: doxorubicin-based regimens, weekly paclitaxel and metastasectomy significantly improve the outcome". Ann. Oncol. 23 (2): 517–23. doi:10.1093/annonc/mdr138. PMID 21566149.
  33. Skubitz KM, Haddad PA (July 2005). "Paclitaxel and pegylated-liposomal doxorubicin are both active in angiosarcoma". Cancer. 104 (2): 361–6. doi:10.1002/cncr.21140. PMID 15948172.
  34. In GK, Hu JS, Tseng WW (August 2017). "Treatment of advanced, metastatic soft tissue sarcoma: latest evidence and clinical considerations". Ther Adv Med Oncol. 9 (8): 533–550. doi:10.1177/1758834017712963. PMC 5524246. PMID 28794805.
  35. Vo KT, Matthay KK, DuBois SG (2016). "Targeted antiangiogenic agents in combination with cytotoxic chemotherapy in preclinical and clinical studies in sarcoma". Clin Sarcoma Res. 6: 9. doi:10.1186/s13569-016-0049-z. PMC 4896001. PMID 27274393.
  36. Lydiatt WM, Shaha AR, Shah JP (November 1994). "Angiosarcoma of the head and neck". Am. J. Surg. 168 (5): 451–4. doi:10.1016/s0002-9610(05)80097-2. PMID 7977971.
  37. Arifi S, Belbaraka R, Rahhali R, Ismaili N (2015). "Treatment of Adult Soft Tissue Sarcomas: An Overview". Rare Cancers Ther. 3: 69–87. doi:10.1007/s40487-015-0011-x. PMC 4837937. PMID 27182479.
  38. Guadagnolo BA, Zagars GK, Araujo D, Ravi V, Shellenberger TD, Sturgis EM (May 2011). "Outcomes after definitive treatment for cutaneous angiosarcoma of the face and scalp". Head Neck. 33 (5): 661–7. doi:10.1002/hed.21513. PMC 4090937. PMID 20960566.
  39. Buehler D, Rice SR, Moody JS, Rush P, Hafez GR, Attia S, Longley BJ, Kozak KR (October 2014). "Angiosarcoma outcomes and prognostic factors: a 25-year single institution experience". Am. J. Clin. Oncol. 37 (5): 473–9. doi:10.1097/COC.0b013e31827e4e7b. PMC 3664266. PMID 23428947.
  40. Seinen JM, Styring E, Verstappen V, Vult von Steyern F, Rydholm A, Suurmeijer AJ, Hoekstra HJ (August 2012). "Radiation-associated angiosarcoma after breast cancer: high recurrence rate and poor survival despite surgical treatment with R0 resection". Ann. Surg. Oncol. 19 (8): 2700–6. doi:10.1245/s10434-012-2310-x. PMC 3404270. PMID 22466664.