Cardiopulmonary resuscitation: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 7: Line 7:
==Overview==
==Overview==


'''[[Cardiopulmonary resuscitation]] (CPR)''' is an emergency medical procedure which can be crucial for saving lives. CPR is used for victims of [[cardiac arrest|cardiac]] and [[respiratory arrest]]. CPR can be performed in hospitals by medical team, or in the community by laypersons or emergency response professionals. CPR consists of artificial [[blood circulation]] and [[artificial respiration]] (i.e. chest compression and lung [[Ventilation (physiology)|ventilation]]). CPR is generally continued, usually in the presence of [[advanced life support]], until the patient regains a heart beat (called "return of spontaneous circulation" or "ROSC") or is declared [[death|dead]]. CPR is unlikely to restart the heart, but rather its purpose is to maintain a flow of oxygenated blood to the [[brain]] and the [[heart]], thereby delaying [[necrosis|tissue death]] and extending the brief window of opportunity for a successful resuscitation without permanent [[brain damage]].  [[Defibrillation]] and [[advanced life support]] are usually needed to restart the heart.
'''[[Cardiopulmonary resuscitation]] (CPR)''' is an emergency medical procedure Which can be crucial for saving lives. This is used for victims of [[cardiac arrest|cardiac]] and [[respiratory arrest]]. CPR can be performed in hospitals by medical team, or in the community by laypersons or emergency response professionals. CPR consists of artificial [[blood circulation]] and [[artificial respiration]] (i.e. chest compression and lung [[Ventilation (physiology)|ventilation]]). CPR is generally continued, usually in the presence of [[advanced life support]], until the patient regains a heart beat (called "return of spontaneous circulation" or "ROSC") or is declared [[death|dead]]. CPR is unlikely to restart the heart, but rather its purpose is to maintain a flow of oxygenated blood to the [[brain]] and the [[heart]], thereby delaying [[necrosis|tissue death]] and extending the brief window of opportunity for a successful resuscitation without permanent [[brain damage]].  [[Defibrillation]] and [[advanced life support]] are usually needed to restart the heart.


==Historical Perspective==
==Historical Perspective==


* CPR has been known in theory, if not practice, for many hundreds or even thousands of years; some claim it is described in the Bible, discerning a superficial similarity to CPR in a passage from the Books of Kings (II 4:34), wherein the Hebrew prophet Elisha warms a dead boy's body and "places his mouth over his".  
* CPR has been known in theory, if not practice, for many hundreds or even thousands of years; some claim it is described in the Bible, discerning a superficial similarity to CPR in a passage from the Books of Kings (II 4:34), wherein the Hebrew prophet Elisha warms a dead boy's body and "places his mouth over his".  
*Throughout history, various methods have been tried to revive humans, like Flagellation and Heat method in past millennials, but from the middle of the last millennium more effective methods have been used, bellows Method developed by the German-Swiss physician Paracelsus in the 1500s.<ref name=":0" /> This method included using a goldsmiths bellows to fill air into a patients chest . This method was used successfully for centuries. Its success was hampered after a French physician Leroy d’Etiolles, in 1829 explained affects of deleterious affects of  [[barotrauma]].
*The association of a dead body with a cooler temperature lead to popular use of heating a body in hopes of bringing it back to life. This idea gave birth to the Heat Method which included applying hot ashes , hot water and even warm animal excreta.
*In the 1700s inspired by the Native Americans called Fumigation that involved blowing tobacco up the rectum in hopes to revive the patient. It was alter discontinued when the the harmful effects of tobacco were explained by Benjamin Brodie in 1811.
*This was followed by the Flagellation Method, which included whipping the patient in attempts to assist them into breathing again .
*This was followed by the popularity of hanging a person to expel air out of the lung called Inversion. Roots of this method were inspired from Egyptians used to resuscitate patients after [[drowning]].
*Bellows Method developed by the German-Swiss physician Paracelsus in the 1500s.<ref name=":0" /> This method included using a goldsmiths bellows to fill air into a patients chest . This method was used successfully for centuries. Its success was hampered after a French physician Leroy d’Etiolles, in 1829 explained affects of deleterious affects of  [[barotrauma]].
*Barrel Method entailed putting the victim on barrel and rolling him in an effort to compress the chest. This back and forth motion would expel the air and as the compression is relieved to fill the air chest with fresh air.<ref name=":0" />
*in the 1700s inspired by the Native Americans called Fumigation that involved blowing tobacco up the rectum in hopes to revive the patient. It was alter discontinued when the the harmful effects of tobacco were explained by Benjamin Brodie in 1811.<ref>Cambridge University Press
978-0-521-84700-1 - Cardiac Arrest: The Science and Practice of Resuscitation Medicine, Second Edition
Edited by Norman A. Paradis, Henry R. Halperin, Karl B. Kern, Volker Wenzel and Douglas A. Chamberlain
Excerpt</ref>
*This was followed by the popularity of hanging a person to expel air out of the lung called Inversion. Roots of this method were inspired from Egyptians used to resuscitate patients after [[drowning]].<ref name=":0">{{Cite web|url=https://www.heart.org/en/news/2018/05/01/cpr-through-history|title=CPR through history|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}</ref>
*Barrel Method entailed putting the victim on barrel and rolling him in an effort to compress the chest. This back and forth motion would expel the air and as the compression is relieved to fill the air chest with fresh air.
*The first use of mouth to mouth resuscitation can be trailed back to the Scottish Surgeon , William Tossach, who used this method to forcefully push air into a collapsed coal-mine worker who walked home after a successful resuscitation in the year 1744.
*The first use of mouth to mouth resuscitation can be trailed back to the Scottish Surgeon , William Tossach, who used this method to forcefully push air into a collapsed coal-mine worker who walked home after a successful resuscitation in the year 1744.
*Drowning remaining the leading cause of death resulted in the formation of multiple societies which included The [[Royal Humane Society]] .They worked on saving people from drowning, freezing,[[strangulation]] and poising by noxious gases.Following its formation in time period of 4 years they claimed that they assisted in saving lives of up-to 150 people. they issued recommendations including warming the patient, removing any thing the patient might be choking on, bellows method along with mouth to mouth and mouth to nostril, rectal or oral fumigation using tobacco and [[bloodletting]].
*Drowning remaining the leading cause of death resulted in the formation of multiple societies which included The [[Royal Humane Society]] .They worked on saving people from drowning, freezing,[[strangulation]] and poising by noxious gases.Following its formation in time period of 4 years they claimed that they assisted in saving lives of up-to 150 people. they issued recommendations including warming the patient, removing any thing the patient might be choking on, bellows method along with mouth to mouth and mouth to nostril, rectal or oral fumigation using tobacco and [[bloodletting]].
*In the 1803 a rather unique method came into being based on [[therapeutic hypothermia]]; termed as the Russian Method. This included the burying the victim under a bed of snow.<ref name=":0" />
*In the 1803 a rather unique method came into being based on [[therapeutic hypothermia]]; termed as the Russian Method. This included the burying the victim under a bed of snow.
* In the 19th century, doctor H. R. Silvester described a method ('''The Silvester Method''') of artificial [[respiration]] in which the patient is laid on their back, and their arms are raised above their head to aid [[inhalation]] and then pressed against their chest to aid exhalation.The procedure is repeated sixteen times per minute. This type of artificial respiration is occasionally seen in films made in the early part of the 20th century.
* In the 19th century, doctor H. R. Silvester described a method ('''The Silvester Method''') of artificial [[respiration]] in which the patient is laid on their back, and their arms are raised above their head to aid [[inhalation]] and then pressed against their chest to aid exhalation.<ref>{{cite web|url=http://www.ucl.ac.uk/slade/slide/ShortStory/7b.html|publisher=University College London|title=Silvester's method|accessdate=2007-06-12}}</ref>The procedure is repeated sixteen times per minute. This type of artificial respiration is occasionally seen in films made in the early part of the 20th century.


[[Image:Picture of old resus methods.jpg|Sign showing old Silvester and Holger-Nielson methods of resuscitation|thumb|260px|center]]
[[Image:Picture of old resus methods.jpg|Sign showing old Silvester and Holger-Nielson methods of resuscitation|thumb|260px|center]]


* A second technique, called the Holger Neilson technique, described in the first edition of the Boy Scout Handbook in the United States in 1932, described a form of artificial respiration where the person was laid on their front, with their head to the side, and a process of lifting their arms and pressing on their back was utilized,<ref name=":0" /> essentially the Silvester Method with the patient flipped over. This form is seen well into the 1950s (it is used in an episode of ''Lassie'' during the Jeff Miller era), and was often used, sometimes for comedic effect, in theatrical cartoons of the time (see ''Tom and Jerry's'' "The Cat and the Mermouse"). This method would continue to be shown, for historical purposes, side-by-side with modern CPR in the Boy Scout Handbook until its ninth edition in 1979.
* A second technique, called the Holger Neilson technique, described in the first edition of the Boy Scout Handbook in the United States in 1911, described a form of artificial respiration where the person was laid on their front, with their head to the side, and a process of lifting their arms and pressing on their back was utilized, essentially the Silvester Method with the patient flipped over. This form is seen well into the 1950s (it is used in an episode of ''Lassie'' during the Jeff Miller era), and was often used, sometimes for comedic effect, in theatrical cartoons of the time (see ''Tom and Jerry's'' "The Cat and the Mermouse"). This method would continue to be shown, for historical purposes, side-by-side with modern CPR in the Boy Scout Handbook until its ninth edition in 1979.


However it wasn't until the middle of the 20th century that the wider medical community started to recognize and promote it as a key part of resuscitation following [[cardiac arrest]]. [[Peter Safar]] (Father of CPR) wrote the book ''ABC of resuscitation'' in 1957. In the U.S., it was first promoted as a technique for the public to learn in the 1970s.
However it wasn't until the middle of the 20th century that the wider medical community started to recognize and promote it as a key part of resuscitation following [[cardiac arrest]]. [[Peter Safar]] wrote the book ''ABC of resuscitation'' in 1957. In the U.S., it was first promoted as a technique for the public to learn in the 1970s.


==Use in Cardiac arrest==
==Use in Cardiac arrest==
The medical term for the condition in which a person's heart has stopped is [[cardiac arrest]] (also referred to as ''cardiorespiratory arrest''). CPR is used on patients in cardiac arrest in order to [[oxygenation|oxygenate]] the blood and maintain a [[cardiac output]] to keep vital organs alive.
The medical term for the condition in which a person's heart has stopped is [[cardiac arrest]]<ref>{{cite web|url=http://www.americanheart.org/presenter.jhtml?identifier=4481|title=Definition of Cardiac Arrest|accessdate=2007-06-13|publisher=American Heart Association}}</ref> (also referred to as ''cardiorespiratory arrest''). CPR is used on patients in cardiac arrest in order to [[oxygenation|oxygenate]] the blood and maintain a [[cardiac output]] to keep vital organs alive.


Blood circulation and oxygenation are absolute requirements in transporting [[oxygen]] to the tissues. The [[brain]] may sustain [[brain damage|damage]] after blood flow has been stopped for about four minutes and irreversible damage after about seven minutes. If blood flow ceases for 1 or 2 hours, the cells of the body [[necrosis|die]] unless they get an adequately gradual bloodflow, (provided by cooling and gradual warming, rarely, in nature [such as in a cold stream of water] or by an advanced medical team). Because of that CPR is generally only effective if performed within 7 minutes of the stoppage of blood flow. The heart also rapidly loses the ability to maintain a normal rhythm. Low body temperatures as sometimes seen in drowning prolong the time the brain survives. Following cardiac arrest, effective CPR enables enough oxygen to reach the brain to delay [[brain death]], and allows the heart to remain responsive to [[defibrillation]] attempts.
Blood circulation and oxygenation are absolute requirements in transporting [[oxygen]] to the tissues. The [[brain]] may sustain [[brain damage|damage]] after blood flow has been stopped for about four minutes and irreversible damage after about seven minutes. If blood flow ceases for 1 or 2 hours, the cells of the body [[necrosis|die]] unless they get an adequately gradual bloodflow, (provided by cooling and gradual warming, rarely, in nature [such as in a cold stream of water] or by an advanced medical team). Because of that CPR is generally only effective if performed within 7 minutes of the stoppage of blood flow.<ref>Newsweek 2007-05-07</ref> The heart also rapidly loses the ability to maintain a normal rhythm. Low body temperatures as sometimes seen in drowning prolong the time the brain survives. Following cardiac arrest, effective CPR enables enough oxygen to reach the brain to delay [[brain death]], and allows the heart to remain responsive to [[defibrillation]] attempts.


If the patient still has a [[pulse]], but is not breathing, this is called [[respiratory arrest]] and [[artificial respiration]] is more appropriate. However, since people often have difficulty detecting a pulse, CPR may be used in both cases, especially when taught as first aid (see below).
If the patient still has a [[pulse]], but is not breathing, this is called [[respiratory arrest]] and [[artificial respiration]] is more appropriate. However, since people often have difficulty detecting a pulse, CPR may be used in both cases, especially when taught as first aid (see below).


==First aid==
==First aid==
CPR is part of the [[chain of survival]], which includes early access (to [[emergency medical service]]s), early CPR, early [[defibrillation]], and early advanced care.  Some first aid trainers also advocate the performance of CPR as part of the choking protocol, if all else has failed.
CPR is part of the [[chain of survival]], which includes early access (to [[emergency medical service]]s), early CPR, early [[defibrillation]], and early advanced care.<ref>{{cite web|url=http://www.chainofsurvival.com/cos/COSoverview_detail.asp|title=Chain of Survival Institute|accessdate=2007-06-12}}</ref> Some first aid trainers also advocate the performance of CPR as part of the choking protocol, if all else has failed.<ref>{{cite web|url=http://www.redcross.org.uk/standard.asp?id=56899&cachefixer=|title=British Red Cross Basic First Aid Guidelines|accessdate=2007-06-12}}</ref>


Sudden cardiac arrest is a leading cause of death, happening to approximately one in 8000 people per annum outside a hospital setting in the USA. CPR can double or triple the victim's chances of survival when commenced immediately (see 'effectiveness' below). According to United States 'Annals of Emergency Medicine', only 25% of victims of a witnessed cardiac arrest are administered CPR by a bystander, with a further 33% receiving some CPR as a result of dispatcher instructions. This leaves 41% of victims receiving no CPR prior to the arrival of the emergency medical services.  
Sudden cardiac arrest is a leading cause of death, happening to approximately one in 8000 people per annum outside a hospital setting in the USA.<ref name="AHA1">{{cite web|url=http://circ.ahajournals.org/cgi/content/full/112/24_suppl/IV-12|title=Overview of CPR|accessdate=2007-06-13|publisher=American Heart Association}}</ref> CPR can double or triple the victim's chances of survival when commenced immediately (see 'effectiveness' below). According to United States 'Annals of Emergency Medicine', only 25% of victims of a witnessed cardiac arrest are administered CPR by a bystander, with a further 33% receiving some CPR as a result of dispatcher instructions. This leaves 41% of victims receiving no CPR prior to the arrival of the emergency medical services.<ref>{{cite journal|title=Study finds factors impeding bystander CPR|author=Hughes, Colleen|date=25th November 2003|accessdate=2007-06-14|journal=Annals of Emergency Medicine (December 2003)|url=http://www.eurekalert.org/pub_releases/2003-11/acoe-sff112003.php}}</ref>


Rapid access to [[defibrillation]] is also vital. The most common cause of cardiac arrest outside of a hospital is [[ventricular fibrillation]] (VF), a potentially fatal arrhythmia that is usually (but not always) caused by a [[myocardial infarction|heart attack]] and is responsive to defibrillation. Other causes of cardiac arrest include [[drowning]], [[drug overdose]], [[Poison|poisoning]], [[electric shock|electrocution]].
Rapid access to [[defibrillation]] is also vital. The most common cause of cardiac arrest outside of a hospital is [[ventricular fibrillation]] (VF), a potentially fatal arrhythmia that is usually (but not always) caused by a [[myocardial infarction|heart attack]] and is responsive to defibrillation. Other causes of cardiac arrest include [[drowning]], [[drug overdose]], [[Poison|poisoning]], [[electric shock|electrocution]].
Line 56: Line 61:


==Guidelines==
==Guidelines==
In 2005, new CPR guidelines were published by the International Resuscitation Councils, agreed at the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science.  The primary goal of these changes was to simplify CPR for lay rescuers and healthcare providers alike, to maximise the potential for early resuscitation. The important changes for 2005 were:<ref name="AHA1" />
In 2005, new CPR guidelines<ref name="AHA2">{{cite web|url=http://circ.ahajournals.org/cgi/content/full/112/24_suppl/IV-19|title=Adult Basic Life Support|accessdate=2007-06-13|publisher=American Heart Association}}</ref><ref>{{cite web|url=http://circ.ahajournals.org/cgi/content/full/112/24_suppl/IV-156|title=Pediatric Basic Life Support|accessdate=2007-06-13|publisher=American Heart Association}}</ref> were published by the International Resuscitation Councils, agreed at the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science.<ref>{{cite web|url=http://circ.ahajournals.org/cgi/content/full/112/22_suppl/III-5|title=Adult Basic Life Support|accessdate=2007-06-13|publisher=American Heart Association}}</ref><ref>{{cite web|url=http://circ.ahajournals.org/cgi/content/full/112/22_suppl/III-73|title=Pediatric Basic and Advanced Life Support|accessdate=2007-06-13|publisher=American Heart Association}}</ref> The primary goal of these changes was to simplify CPR for lay rescuers and healthcare providers alike, to maximise the potential for early resuscitation. The important changes for 2005 were:<ref name="AHA1" />
* A universal compression-ventilation ratio (30:2) recommended for all single rescuers of [[infant]] (less than one year old), [[child]] (1 year old to puberty), and [[adult]] ([[puberty]] and above) victims (excluding newborns).  The primary difference between the age groups is that with adults the rescuer uses two hands for the chest compressions, while with children it is only one, and with infants only two fingers (pointer and middle fingers). Whilst this simplification has been introduced, it has not been universally accepted, and especially amongst healthcare professionals, protocols may still vary.
* A universal compression-ventilation ratio (30:2) recommended for all single rescuers of [[infant]] (less than one year old), [[child]] (1 year old to puberty), and [[adult]] ([[puberty]] and above) victims (excluding newborns).<ref>{{cite web|url=http://www.resus.org.au/faqs_guidelines_march06.pdf|title=Australian Resucitation Council Guidelines as of March 6|accessdate=2007-06-13}}</ref> The primary difference between the age groups is that with adults the rescuer uses two hands for the chest compressions, while with children it is only one, and with infants only two fingers (pointer and middle fingers). Whilst this simplification has been introduced, it has not been universally accepted, and especially amongst healthcare professionals, protocols may still vary.<ref>{{cite web|url=http://www.resus.org.uk/pages/pals.pdf|title=Resucitation Council UK Paediatric Advanced Life Support Guidelines|accessdate=2007-06-13}}</ref>
* The removal of the emphasis on lay rescuers assessing for pulse or signs of circulation for an unresponsive adult victim, instead taking the absence of ''normal'' breathing as the key indicator for commencing CPR.
* The removal of the emphasis on lay rescuers assessing for pulse or signs of circulation for an unresponsive adult victim, instead taking the absence of ''normal'' breathing as the key indicator for commencing CPR.
* The removal of the protocol in which lay rescuers provide rescue breathing without chest compressions for an adult victim, with all cases such as these being subject to CPR.
* The removal of the protocol in which lay rescuers provide rescue breathing without chest compressions for an adult victim, with all cases such as these being subject to CPR.
Line 67: Line 72:
==Prevalence and Effectiveness==
==Prevalence and Effectiveness==
===Chance of getting CPR===
===Chance of getting CPR===
Various studies suggest that in out of home cardiac arrest, bystanders, lay persons or family members attempt CPR in between 14% and 45% of the time, with a median of 32%. This indicates that around 1/3 of out-of-home arrests have a CPR attempt made on them. However, the effectiveness of this CPR is variable, and the studies suggest only around half of bystander CPR is performed correctly.
Various studies suggest that in out of home cardiac arrest, bystanders, lay persons or family members attempt CPR in between 14%<ref name="swor">{{cite journal|last=Swor|first=RA|couauthors=Jackson RE; Cynar M; Sadler E; Basse W; Boji B; Rivera-Rivera EJ; Maher A; Grubb W; Jacobson R et al.|title=Bystander CPR, ventricular fibrillation and survival in witnessed, unmonitored out-of-hospital cardiac arrest|journal=Annals of Emergency Medicine|date=June 1995|volume=25|issue=6|page=780-4|id=PMID:7755200}}</ref> and 45%<ref name="wik">{{cite journal|last=Wik|first=L|coauthors=Steen PA; Bircher NH|title=Quality of bystander cardiopulmonary rescucitation influence outcome after prehospital cardiac arrest|journal=Resuscitation|date=December 1994|volume=28|issue=4|pages=195-203|id=PMID: 7740189}}</ref> of the time, with a median of 32%. This indicates that around 1/3 of out-of-home arrests have a CPR attempt made on them. However, the effectiveness of this CPR is variable, and the studies suggest only around half of bystander CPR is performed correctly.<ref>{{cite journal|last=Van Hoeyweghen|first=RJ|coauthors=Bossaert LL; Mullie |; Calle P; Martens P; Buylaert WA; Delooz H|title=Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group|journal=Resuscitation|date=August 1993|volume=26|issue=1|pages=47-52}}</ref><ref>{{cite journal|last=Gallagher|first=EJ|coauthors=Lombardi G; Gennis P|title=Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest|journal=JAMA|date=December 1995|Volume=274|issue=24|id=PMID: 8568985}}</ref>


There is a clear correlation between age and the chance of CPR being commenced, with younger people being far more likely to have CPR attempted on them prior to the arrival of emergency medical services.<ref name="swor" />  It was also found that CPR was more commonly given by a bystander in public, than when an arrest occurred in the patient's home, although health care professionals are responsible for more than half of out-of-hospital resuscitation attempts.<ref name="wik" />  This is supported by further research, which suggests that people with no connection to the victim are more likely to perform CPR than a member of their family.
There is a clear correlation between age and the chance of CPR being commenced, with younger people being far more likely to have CPR attempted on them prior to the arrival of emergency medical services.<ref name="swor" /><ref>{{cite journal|last=jackson|first=RE|coauthors=Swor RA|title=Who gets bystander cardiopulmonary resuscitation in a witnessed arrest?|journal=Academy of Emergency Medicine|date=June 1997|volume=4|issue=6|pages=560-4|id=PMID: 9189184}}</ref>  It was also found that CPR was more commonly given by a bystander in public, than when an arrest occurred in the patient's home, although health care professionals are responsible for more than half of out-of-hospital resuscitation attempts.<ref name="wik" />  This is supported by further research, which suggests that people with no connection to the victim are more likely to perform CPR than a member of their family.<ref name="bossaert">{{Cite journal|last=Bossaert|first=L|coauthors=Van Hoeyweghen R|title=Bystander cardiopulmonary resuscitation in out-of-hospital cardiac arrest. The Cerebral Resuscitation study group|journal=Resuscitation|date=1989|volume=17|issue=Suppl S55-69|id=PMID: 2551021}}</ref>


There is also a correlation between the cause of arrest and the likelihood of bystander CPR being initiated. Lay persons are most likely to give CPR to younger cardiac arrest victims in a public place when it has a medical cause; victims in arrest from trauma, exsanguination or intoxication are less likely to receive CPR.<ref name="bossaert" />
There is also a correlation between the cause of arrest and the likelihood of bystander CPR being initiated. Lay persons are most likely to give CPR to younger cardiac arrest victims in a public place when it has a medical cause; victims in arrest from trauma, exsanguination or intoxication are less likely to receive CPR.<ref name="bossaert" />


===Chance of getting CPR in time===
===Chance of getting CPR in time===
CPR is only likely to be effective if commenced within 6 minutes after the blood flow stops, because permanent brain cell damage occurs when fresh blood infuses the cells after that time, since the cells of the brain become dormant in as little as 4-6 minutes in an oxygen deprived environment and the cells are unable to survive the reintroduction of oxygen in a traditional resuscitation. Research using cardioplegic blood infusion resulted in a 79.4% survival rate with cardiac arrest intervals of 72±43 minutes, traditional methods achieve a 15% survival rate in this scenario, by comparison. New research is currently needed to determine what role CPR, electroshock, and new advanced gradual resuscitation techniques will have with this new knowledge
CPR is only likely to be effective if commenced within 6 minutes after the blood flow stops,<ref name="cummins">{{cite journal|last=Cummins|first=RO|coauthors=Eisenberg MS; Hallstrom AP; Litwin PE|title=Survival of out-of-hospital cardiac arrest with early initiation of cardiopulmonary resuscitation|journal=American Journal of Emergency Medicine|date=March 1985|volume=3|issue=2|pages=114-9|id=PMID: 3970766}}</ref> because permanent brain cell damage occurs when fresh blood infuses the cells after that time, since the cells of the brain become dormant in as little as 4-6 minutes in an oxygen deprived environment and the cells are unable to survive the reintroduction of oxygen in a traditional resuscitation. Research using cardioplegic blood infusion resulted in a 79.4% survival rate with cardiac arrest intervals of 72±43 minutes, traditional methods achieve a 15% survival rate in this scenario, by comparison. New research is currently needed to determine what role CPR, electroshock, and new advanced gradual resuscitation techniques will have with this new knowledge<ref>{{cite journal
A notable exception is cardiac arrest occurring in conjunction with exposure to very cold temperatures.  [[Hypothermia]] seems to protect the victim by slowing down [[metabolism|metabolic]] and [[human physiology|physiologic]] processes, greatly decreasing the tissues' need for oxygen. There are cases where CPR, defibrillation, and advanced warming techniques have revived victims after substantial periods of hypothermia.
  | last = Athanasuleas
  | first = Constantine
  | coauthors = Buckberg, Gerald D.;Allen, Bradley S.; Beyersdorf, Friedhelm; Kirsh, Marvin M.
  | title = Sudden cardiac death: directing the scope of resuscitation towards the heart and brain.
  | journal = Resuscitation
  | volume = 70
  | issue = 1
  | pages = 44-51
  | date = 2006
  | id = PMID 16759784 {{ISSN|0300-9572}}
  | url = http://repositories.cdlib.org/cgi/viewcontent.cgi?article=5092&context=postprints
  | format = [[PDF]]
  | accessdate = 2007-05-02 }}</ref>
A notable exception is cardiac arrest occurring in conjunction with exposure to very cold temperatures.  [[Hypothermia]] seems to protect the victim by slowing down [[metabolism|metabolic]] and [[human physiology|physiologic]] processes, greatly decreasing the tissues' need for oxygen.<ref>{{cite journal|last=Guilfoy|first=Christine|journal=American Journal of Physiology - Heart and Circulatory Physiology|title=Heart has enough oxygen to survive hypothermia|accessdate=2007-06-14|date=18th July 2006|url=http://www.eurekalert.org/pub_releases/2006-07/aps-hhe071206.php}}</ref> There are cases where CPR, defibrillation, and advanced warming techniques have revived victims after substantial periods of hypothermia.<ref>{{cite journal
  | last = Eich
  | first = Christoph
  | coauthors = Brauer, Anselm; Kettler, Dietrich
  | title = Recovery of a hypothermic drowned child after resuscitation with cardiopulmonary bypass followed by prolonged extracorporeal membrane oxygenation
  | journal = Resuscitation
  | volume = 67
  | issue = 1
  | pages = 145-8
  | date = 2005
  | id = PMID 16129537 {{ISSN|0300-9572}} {{doi|10.1016/j.resuscitation.2005.05.002}}
  | url = http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T19-4H0BT55-6-2&_cdi=4885&_user=10&_orig=browse&_coverDate=10%2F31%2F2005&_sk=999329998&view=c&wchp=dGLbVtz-zSkWW&md5=77efe410bf27606a0386b5d6ab8d387d&ie=/sdarticle.pdf
  | format = [[PDF]]
  | accessdate = 2007-01-29 }}</ref>


===Chance of surviving===
===Chance of surviving===
Used alone, CPR will result in few complete recoveries, and those that do survive often develop serious complications. Estimates vary, but many organizations stress that CPR does not "bring anyone back," it simply preserves the body for [[defibrillation]] and [[advanced life support]].<ref name="AHA6" /> However, in the case of "non-shockable" rhythms such as [[Pulseless electrical activity|Pulseless Electrical Activity]] (PEA), defibrillation is not indicated, and the importance of CPR rises. On average, only 5%-10% of people who receive CPR survive. The purpose of CPR is not to "start" the heart, but rather to circulate oxygenated blood, and keep the brain alive until advanced care (especially defibrillation) can be initiated. As many of these patients may have a pulse that is impalpable by the layperson rescuer, the current consensus is to perform CPR on a patient that is not breathing. A pulse check is not required in basic CPR since it is so often missed when present, or even felt when absent, even by health care professionals.
Used alone, CPR will result in few complete recoveries, and those that do survive often develop serious complications. Estimates vary, but many organizations stress that CPR does not "bring anyone back," it simply preserves the body for [[defibrillation]] and [[advanced life support]].<ref name="AHA6" /> However, in the case of "non-shockable" rhythms such as [[Pulseless electrical activity|Pulseless Electrical Activity]] (PEA), defibrillation is not indicated, and the importance of CPR rises. On average, only 5%-10% of people who receive CPR survive.<ref>{{cite web|last=WebMD Medical News|url=http://www.webmd.com/content/article/32/1728_79637.htm|title=Real CPR isn't everything it seems to be|accessdate=2007-06-13}}</ref> The purpose of CPR is not to "start" the heart, but rather to circulate oxygenated blood, and keep the brain alive until advanced care (especially defibrillation) can be initiated. As many of these patients may have a pulse that is impalpable by the layperson rescuer, the current consensus is to perform CPR on a patient that is not breathing. A pulse check is not required in basic CPR since it is so often missed when present, or even felt when absent, even by health care professionals.


Studies have shown the importance of immediate CPR followed by defibrillation within 3–5 minutes of sudden VF cardiac arrest improve survival. In cities such as Seattle where CPR training is widespread and defibrillation by EMS personnel follows quickly, the survival rate is about 30 percent. In cities such as New York City, without those advantages, the survival rate is only 1-2 percent.
Studies have shown the importance of immediate CPR followed by defibrillation within 3–5 minutes of sudden VF cardiac arrest improve survival. In cities such as Seattle where CPR training is widespread and defibrillation by EMS personnel follows quickly, the survival rate is about 30 percent. In cities such as New York City, without those advantages, the survival rate is only 1-2 percent.<ref name="AHA7">http://www.americanheart.org/presenter.jhtml?identifier=4483</ref>


:{| class="wikitable"
:{| class="wikitable"
Line 92: Line 123:
| 48%
| 48%
| 22%
| 22%
|
|<ref name="CMAJ">{{cite journal|last=Brindley|first=Peter G|coauthors=Markland, Darren M. Kutsogiannis, Demetrios J|title=Predictors of survival following in-hospital adult cardiopulmonary rescuitation|journal=Canadian Medical Association Journal|volume=174|issue=4|date=2002-08-20|url=http://www.cmaj.ca/cgi/content/full/167/4/343|accessdate=2007-06-14}}</ref>
|-
|-
| Unwitnessed In-Hospital Cardiac Arrest
| Unwitnessed In-Hospital Cardiac Arrest
Line 102: Line 133:
| 40%
| 40%
| 6%
| 6%
|
|<ref name="RSCUK">{{cite web|url=http://www.resus.org.uk/pages/compCPRs.htm|title=Resucitation Council Comment on CPR study|publisher=Resuscitation Council UK|date=April 2007|accessdate=2007-06-14}}</ref>
|-
|-
| Bystander Cardiopulmonary Resuscitation
| Bystander Cardiopulmonary Resuscitation
Line 117: Line 148:
| 74%
| 74%
| 30%
| 30%
|<ref name="AHA7" />
|<ref name="AHA6">{{cite web|url=http://www.americanheart.org/presenter.jhtml?identifier=4483|title=CPR statistics|publisher=American Heart Association|accessdate=2007-06-14}}</ref><ref name="AHA7" />
|}
|}


Line 127: Line 158:


====Manual Assist devices====
====Manual Assist devices====
These items can be devices to placed on top of the chest, with the rescuers hands going over the device, and a display giving information on depth or force. Several published evaluations of one particular product, known as CPREzy, with these features show that the device can improve the performance of chest compressions.  
These items can be devices to placed on top of the chest, with the rescuers hands going over the device, and a display giving information on depth or force.<ref>{{cite web|url=http://www.cprezy.co.uk|title=CPREzy|accessdate=2007-08-18}}</ref> Several published evaluations of one particular product, known as CPREzy, with these features show that the device can improve the performance of chest compressions.<ref>{{cite journal|journal=Resuscitation|volume=64|issue=2005|title=CPREzy: an evaluation during simulated cardiac arrest on a hospital bed|first=Gavin D|last=Perkins|coauthors=Augre, Colette; Rogers, Helen;Allan, Michael; Thickett, David R|date=23rd August 2004|url=http://www.cprezy.com/PDF/CPREzy%20on%20Hosp%20Bed%20(GDP).pdf}}</ref><ref>{{cite journal|journal=Resuscitation|volume=54|issue=2002|last=Boyle|first=Andrew J|coauthors=Wilson, Andrew M; Connelly, Kim; McGuigan, Louisa; Wilson, Jenny; Whitbourn, Robert|date=March 2002|title=CPREzy:an evaluation during simulated cardiac arrest on a hospital bed}}</ref>
More recently, these features have also been combined in to a wearable format, as a glove.  This glove also has additional features such as a basic electro-cardiogram device. This device was developed by students as part of their thesis, and has been named as one of the top ten inventions of 2007 in Popular Science magazine.
More recently, these features have also been combined in to a wearable format, as a glove.<ref>{{cite web|url=http://www.cprglove.com/|title=CPR Glove Website|accessdate=2007-08-18}}</ref> This glove also has additional features such as a basic electro-cardiogram device. This device was developed by students as part of their thesis, and has been named as one of the top ten inventions of 2007 in Popular Science magazine.<ref>{{cite web|url=http://www.popsci.com/popsci/technology/9d37485a9f492110vgnvcm1000004eecbccdrcrd.html|publisher=Popular Science Magazine|title=The glove that saves lives|last=Rosenwald|first=Mike|accessdate=2007-08-20}}</ref>


====Automatic devices====
====Automatic devices====
There are also some devices available which take over the chest compressions for the rescuer. These devices use techniques such as pneumatics to drive a compressing pad on to the chest of the patient. One such device, known as the LUCAS, was developed at Lund University, is powered by the compressed air cylinders or lines available in ambulances or in hospitals, and has undergone numerous clinical trials, showing a marked improvement in coronary perfusion pressure and return of spontaneous circulation.
There are also some devices available which take over the chest compressions for the rescuer. These devices use techniques such as pneumatics to drive a compressing pad on to the chest of the patient. One such device, known as the LUCAS, was developed at Lund University, is powered by the compressed air cylinders or lines available in ambulances or in hospitals, and has undergone numerous clinical trials, showing a marked improvement in coronary perfusion pressure<ref>{{cite journal|journal=Resuscitation|last=Steen et al|title=Evaluation of LUCAS, a new device for automated mechanical compression and active decompression|date=2002|volume=55}}</ref> and return of spontaneous circulation.<ref>{{cite journal|journal=Resuscitation|volume=69|last=Rubertsson et al.|title=Increased restoration of spontaneous circulation after cardiac arrest with the LUCAS device compared to manual chest compressions|date=2006}}</ref>


Another system called the [[AutoPulse]] is electrically powered and uses a large band around the patients chest which contracts in rhythm in order to deliver chest compressions.  This is also backed by clinical studies showing increased successful return of spontaneous circulation.
Another system called the [[AutoPulse]] is electrically powered and uses a large band around the patients chest which contracts in rhythm in order to deliver chest compressions.  This is also backed by clinical studies showing increased successful return of spontaneous circulation.<ref>{{cite journal|last=Casner|first=M|coauthors=Anderson, D; Isaacs, SM|title=The impact of a new CPR assist device on the rate of return of spontaneous circulation in out-of-hospital cardiac arrest|journal=Prehospital Emergency Care|volume=9|issue=1|date=Jan-Mar 2005|url=http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=pubmed&dopt=AbstractPlus&list_uids=16036830&query_hl=11&itool=pubmed_docsum}}</ref><ref>{{cite journal|journal=Journal of the American Medical Association|volume=295|issue=22|last=Hallstrom|first=Al|coauthors=Rea, Thomas; Sayre, Michael; Christenson, James; Anton, Andy; Mosesso, Vince; Ottingham, Lois; Olsufka, Michele; Pennington, Sarah; White, Lynn; Yahn, Stephen; Husar, James; Morris, Mary; Cob, Leonard|title=Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest|url=http://jama.ama-assn.org/cgi/reprint/jama;295/22/2620.pdf?ijkey=V96Oxk0wfyGibgF&keytype=finite}}</ref>


==Alternative Methods==
==Alternative Methods==
Line 139: Line 170:
The [[International Liaison Committee on Resuscitation]] (ILCOR) approach described above has been challenged in recent years by advocates for [[Cardiocerebral Resuscitation]] ([[Cardiocerebral Resuscitation|CCR]]). [[Cardiocerebral Resuscitation|CCR]] is simply chest compressions without [[artificial respiration]]. The ventilation component of CPR has been a topic of major controversy over the past decade.  
The [[International Liaison Committee on Resuscitation]] (ILCOR) approach described above has been challenged in recent years by advocates for [[Cardiocerebral Resuscitation]] ([[Cardiocerebral Resuscitation|CCR]]). [[Cardiocerebral Resuscitation|CCR]] is simply chest compressions without [[artificial respiration]]. The ventilation component of CPR has been a topic of major controversy over the past decade.  


In March 2007, a Japanese study in the medical journal ''[[The Lancet]]'' presented strong evidence that compressing the chest, not MTM ventilation, is the key to helping someone recover from cardiac arrest.  
In March 2007, a Japanese study in the medical journal ''[[The Lancet]]'' presented strong evidence that compressing the chest, not MTM ventilation, is the key to helping someone recover from cardiac arrest.<ref>{{cite web|last=DeNoon|first=Daniel J|url=http://www.webmd.com/heart-disease/news/20070316/CPR-mouth-to-mouth-not-much-help|title=CPR: Mouth-to-mouth not much help|date=2007-03-16|accessdate=2007-06-13}}</ref>


The [[Cardiocerebral Resuscitation|CCR]] method is championed by the University of Arizona's Sarver Heart Center, and a recent study by the university, claims a 300% greater success rate over standard CPR. The exceptions were in the case of [[drowning]] or [[drug overdose]].
The [[Cardiocerebral Resuscitation|CCR]] method is championed by the University of Arizona's Sarver Heart Center, and a recent study by the university,<ref>{{cite web|url=http://www.scienceblog.com/cms/a-better-sort-of-cpr-11985.html|title=A better sort of CPR|accessdate=2007-06-16}}</ref> claims a 300% greater success rate over standard CPR.<ref>{{cite journal|url=http://circ.ahajournals.org/cgi/content/full/111/16/2134?etoc|last=Ewy|first=Gordon A|date=24th November 2004|title=A new Cardiopulmonary resuscitation|accessdate=2007-06-15|journal=Circulation|publisher=American Heart Association|volume=111|issue=2134-2142}}</ref> The exceptions were in the case of [[drowning]] or [[drug overdose]].


The method of delivering chest compressions remains the same, as does the rate (100 per minute), but the rescuer delivers only the compression element which, the University of Arizona claims, keeps the blood flow moving without the interruption caused by insufflations.
The method of delivering chest compressions remains the same, as does the rate (100 per minute), but the rescuer delivers only the compression element which, the University of Arizona claims, keeps the blood flow moving without the interruption caused by insufflations.
Line 149: Line 180:
===Rhythmic Abdominal Compressions===
===Rhythmic Abdominal Compressions===


Rhythmic abdominal compression-CPR works by forcing blood from the blood vessels around the abdominal organs, an area known to contain about 25 percent of the body's total blood volume. This blood is then redirected to other sites, including the circulation around the heart. Findings published in the September 2007 issue of the American Journal of Emergency Medicine using pigs found that 60 percent more blood was pumped to the heart using rhythmic abdominal compression-CPR than with standard chest compression-CPR, using the same amount of effort. There was no evidence that rhythmic abdominal compressions damaged the abdominal organs and the risk of rib fracture was avoided. Avoiding mouth-to-mouth breathing and chest compressions eliminates the risk of rib fractures and transfer of infection.
Rhythmic abdominal compression-CPR works by forcing blood from the blood vessels around the abdominal organs, an area known to contain about 25 percent of the body's total blood volume. This blood is then redirected to other sites, including the circulation around the heart. Findings published in the September 2007 issue of the American Journal of Emergency Medicine using pigs found that 60 percent more blood was pumped to the heart using rhythmic abdominal compression-CPR than with standard chest compression-CPR, using the same amount of effort. There was no evidence that rhythmic abdominal compressions damaged the abdominal organs and the risk of rib fracture was avoided. Avoiding mouth-to-mouth breathing and chest compressions eliminates the risk of rib fractures and transfer of infection.<ref>http://www.emsvillage.com/articles/article.cfm?id=2214</ref>


===Self-CPR===
===Self-CPR===
A form of "self-CPR" termed "Cough CPR" may help a person maintain blood flow to the brain during a heart attack while waiting for medical help to arrive and has been used in a hospital [[emergency department|emergency room]] in cases where "standard CPR" was contraindicated.
A form of "self-CPR" termed "Cough CPR" may help a person maintain blood flow to the brain during a heart attack while waiting for medical help to arrive and has been used in a hospital [[emergency department|emergency room]] in cases where "standard CPR" was contraindicated.


"Cough CPR" was the subject of a hoax chain e-mail entitled "How to Survive a [[myocardial infarction|Heart Attack]] When Alone" which wrongly cited "ViaHealth Rochester, Rochester General Hospital" as the source of the technique. Rochester General Hospital has denied any connection with the technique.
"Cough CPR" was the subject of a hoax chain e-mail entitled "How to Survive a [[myocardial infarction|Heart Attack]] When Alone" which wrongly cited "ViaHealth Rochester, Rochester General Hospital" as the source of the technique. Rochester General Hospital has denied any connection with the technique.<ref>{{cite web|url=http://www.viahealth.org/body_rochester.cfm?id=329|title=ViaHealth Rochester General Hospital statement on 'Cough CPR' email|accessdate=2007-06-13}}</ref><ref>{{cite web|url=http://www.snopes.com/medical/homecure/coughcpr.asp|title=Snopes Urban Legends Reference - Cough CPR|accessdate=2007-06-13}}</ref>


Rapid coughing has been used in hospitals for brief periods of [[cardiac arrhythmia]] on [[electrocardiogram|monitored]] patients. One researcher has recommended that it be taught broadly to the public.
Rapid coughing has been used in hospitals for brief periods of [[cardiac arrhythmia]] on [[electrocardiogram|monitored]] patients. One researcher has recommended that it be taught broadly to the public.<ref>{{cite journal | author = Rieser M | title = The use of cough-CPR in patients with acute myocardial infarction. | journal = J Emerg Med | volume = 10 | issue = 3 | pages = 291-3 | year =1992 | month=May-Jun | id = PMID 1624741}}</ref><ref>{{cite news | author=Associated Press | title=Cough may help during heart attack -- Technique may allow patients to stay conscious, study finds | date=October 31, 2003 | url=http://msnbc.msn.com/id/3077018/}}</ref>


However, “cough CPR” cannot be used outside the hospital because the first symptom of cardiac arrest is unconsciousness in which case coughing is impossible. Further, the vast majority of people suffering chest pain from a [[myocardial infarction|heart attack]] will not be in cardiac arrest and CPR is not needed. In these cases '''attempting “cough CPR” will increase the workload on the heart and may be harmful'''. When coughing is used on trained and monitored patients in hospitals, it has only been shown to be effective for 90 seconds.
However, “cough CPR” cannot be used outside the hospital because the first symptom of cardiac arrest is unconsciousness<ref>Australian Resuscitation Council Newsletter (2003) Vol. 27 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_nov_2003.pdf</ref> in which case coughing is impossible. Further, the vast majority of people suffering chest pain from a [[myocardial infarction|heart attack]] will not be in cardiac arrest and CPR is not needed. In these cases '''attempting “cough CPR” will increase the workload on the heart and may be harmful'''. When coughing is used on trained and monitored patients in hospitals, it has only been shown to be effective for 90 seconds.<ref>Australian Resuscitation Council Newsletter (2005) Vol. 29 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_dec2005.pdf</ref>


The [[American Heart Association]] (AHA) and other resuscitation bodies, '''do not endorse''' "Cough CPR", which it terms a misnomer as it is not a form of ''resuscitation''. The AHA does recognize a limited legitimate use of the coughing technique:<blockquote>"This coughing technique to maintain blood flow during brief [[Cardiac arrhythmia|arrhythmias]] has been useful in the hospital, particularly during [[cardiac catheterization]]. In such cases the patients [[electrocardiogram|ECG]] is monitored continuously, and a physician is present."<ref>{{cite web|url=http://www.americanheart.org/presenter.jhtml?identifier=4535|title=Cough CPR|accessdate=2007-06-13|publisher=American Heart Association}}</ref></blockquote>
The [[American Heart Association]] (AHA) and other resuscitation bodies,<ref>Australian Resuscitation Council Newsletter (2005) Vol. 29 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_dec2005.pdf</ref> '''do not endorse''' "Cough CPR", which it terms a misnomer as it is not a form of ''resuscitation''. The AHA does recognize a limited legitimate use of the coughing technique:<blockquote>"This coughing technique to maintain blood flow during brief [[Cardiac arrhythmia|arrhythmias]] has been useful in the hospital, particularly during [[cardiac catheterization]]. In such cases the patients [[electrocardiogram|ECG]] is monitored continuously, and a physician is present."<ref>{{cite web|url=http://www.americanheart.org/presenter.jhtml?identifier=4535|title=Cough CPR|accessdate=2007-06-13|publisher=American Heart Association}}</ref></blockquote>


==Place in film and television==
==Place in film and television==
CPR is often severely misrepresented in movies and television as being highly effective in resuscitating a person who is not breathing and has no circulation.
CPR is often severely misrepresented in movies and television as being highly effective in resuscitating a person who is not breathing and has no circulation.


A 1996 study published in the New England Journal of Medicine showed that CPR success rates in television shows was 75%.
A 1996 study published in the New England Journal of Medicine showed that CPR success rates in television shows was 75%.<ref>{{cite web|url=http://content.nejm.org/cgi/content/abstract/334/24/1578|title=CPR statistics|accessdate=2007-06-13|publisher=American Heart Association}}</ref>


It is important to note that CPR techniques portrayed on television and in film are purposely incorrect. Actors performing simulated CPR will keep their elbows bent, to prevent force from reaching the fictional victim's heart. As well as causing significant local [[blunt trauma|trauma]], in theory performing CPR on healthy persons may disrupt heart rhythms.
It is important to note that CPR techniques portrayed on television and in film are purposely incorrect. Actors performing simulated CPR will keep their elbows bent, to prevent force from reaching the fictional victim's heart. As well as causing significant local [[blunt trauma|trauma]], in theory performing CPR on healthy persons may disrupt heart rhythms.


==Application on animals==
==Application on animals==
It is entirely feasible to perform CPR on animals like cats and dogs. The principles and practices are virtually identical to CPR for humans. One is cautioned to only perform CPR on unconscious animals to avoid the risk of being bitten.
It is entirely feasible to perform CPR on animals like cats and dogs. The principles and practices are virtually identical to CPR for humans. One is cautioned to only perform CPR on unconscious animals to avoid the risk of being bitten.<ref>{{cite web | title=CPR for Cats & Dogs  | url=http://depts.washington.edu/learncpr/cat&dog.html | publisher=University of Washington School of Medicine}}</ref>


==References==
==References==
1.    [[Cardiopulmonary resuscitation#cite%20ref-1|Jump iup↑]] iCambridge iUniversity iPress i978-0-521-84700-1 i- iCardiac iArrest: iThe iScience iand iPractice iof iResuscitation iMedicine, iSecond iEdition iEdited iby iNorman iA. iParadis, iHenry iR. iHalperin, iKarl iB. iKern, iVolker iWenzel iand iDouglas iA. iChamberlain iExcerpt
{{reflist|2}}
 
2.    [[Cardiopulmonary resuscitation#cite%20ref-2|Jump iup↑]] i''"CPR ithrough ihistory".''
 
3.    [[Cardiopulmonary resuscitation#cite%20ref-3|Jump iup↑]] i''"Silvester's imethod". iUniversity iCollege iLondon. iRetrieved i2007-06-12.''
 
4.    [[Cardiopulmonary resuscitation#cite%20ref-4|Jump iup↑]] i''"Definition iof iCardiac iArrest". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
5.    [[Cardiopulmonary resuscitation#cite%20ref-5|Jump iup↑]] iNewsweek i2007-05-07
 
6.    [[Cardiopulmonary resuscitation#cite%20ref-6|Jump iup↑]] i''"Chain iof iSurvival iInstitute". iRetrieved i2007-06-12.''
 
7.    [[Cardiopulmonary resuscitation#cite%20ref-7|Jump iup↑]] i''"British iRed iCross iBasic iFirst iAid iGuidelines". iRetrieved i2007-06-12.''
 
8.    ↑ i[[Cardiopulmonary resuscitation#cite%20ref-AHA1%208-0|<sup>Jump iup ito:8.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-AHA1%208-1|<sup>8.1</sup>]] i''"Overview iof iCPR". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
9.    [[Cardiopulmonary resuscitation#cite%20ref-9|Jump iup↑]] i''Hughes, iColleen i(25th iNovember i2003). i"Study ifinds ifactors iimpeding ibystander iCPR". iAnnals iof iEmergency iMedicine i(December i2003). iRetrieved i2007-06-14.''
 
10. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-AHA2%2010-0|<sup>Jump iup ito:10.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-AHA2%2010-1|<sup>10.1</sup>]] i''"Adult iBasic iLife iSupport". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
11. [[Cardiopulmonary resuscitation#cite%20ref-11|Jump iup↑]] i''"Pediatric iBasic iLife iSupport". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
12. [[Cardiopulmonary resuscitation#cite%20ref-12|Jump iup↑]] i''"Adult iBasic iLife iSupport". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
13. [[Cardiopulmonary resuscitation#cite%20ref-13|Jump iup↑]] i''"Pediatric iBasic iand iAdvanced iLife iSupport". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
14. [[Cardiopulmonary resuscitation#cite%20ref-14|Jump iup↑]] i''"Australian iResucitation iCouncil iGuidelines ias iof iMarch i6" i(PDF). iRetrieved i2007-06-13.''
 
15. [[Cardiopulmonary resuscitation#cite%20ref-15|Jump iup↑]] i''"Resucitation iCouncil iUK iPaediatric iAdvanced iLife iSupport iGuidelines"(PDF). iRetrieved i2007-06-13.''
 
16. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-swor%2016-0|<sup>Jump iup ito:16.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-swor%2016-1|<sup>16.1</sup>]] i''Swor, iRA i(June i1995). i"Bystander iCPR, iventricular ifibrillation iand isurvival iin iwitnessed, iunmonitored iout-of-hospital icardiac iarrest". iAnnals iof iEmergency iMedicine. i'''25''' i(6): i780-4. iPMID:7755200.''
 
17. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-wik%2017-0|<sup>Jump iup ito:17.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-wik%2017-1|<sup>17.1</sup>]] i''Wik, iL i(December i1994). i"Quality iof ibystander icardiopulmonary irescucitation iinfluence ioutcome iafter iprehospital icardiac iarrest". iResuscitation. i'''28'''(4): i195–203. iPMID: i7740189.''
 
18. [[Cardiopulmonary resuscitation#cite%20ref-18|Jump iup↑]] i''Van iHoeyweghen, iRJ i(August i1993). i"Quality iand iefficiency iof ibystander iCPR. iBelgian iCerebral iResuscitation iStudy iGroup". iResuscitation. i'''26''' i(1): i47–52.''
 
19. [[Cardiopulmonary resuscitation#cite%20ref-19|Jump iup↑]] i''Gallagher, iEJ i(December i1995). i"Effectiveness iof ibystander icardiopulmonary iresuscitation iand isurvival ifollowing iout-of-hospital icardiac iarrest". iJAMA i(24). iPMID: i8568985.''
 
20. [[Cardiopulmonary resuscitation#cite%20ref-20|Jump iup↑]] i''jackson, iRE i(June i1997). i"Who igets ibystander icardiopulmonary iresuscitation iin ia iwitnessed iarrest?". iAcademy iof iEmergency iMedicine. i'''4''' i(6): i560–4. iPMID: i9189184.''
 
21. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-bossaert%2021-0|<sup>Jump iup ito:21.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-bossaert%2021-1|<sup>21.1</sup>]] i''Bossaert, iL i(1989). i"Bystander icardiopulmonary iresuscitation iin iout-of-hospital icardiac iarrest. iThe iCerebral iResuscitation istudy igroup". iResuscitation. i'''17'''(Suppl iS55-69). iPMID: i2551021.''
 
22. [[Cardiopulmonary resuscitation#cite%20ref-cummins%2022-0|Jump iup↑]] i''Cummins, iRO i(March i1985). i"Survival iof iout-of-hospital icardiac iarrest iwith iearly iinitiation iof icardiopulmonary iresuscitation". iAmerican iJournal iof iEmergency iMedicine. i'''3''' i(2): i114–9. iPMID: i3970766.''
 
23. [[Cardiopulmonary resuscitation#cite%20ref-23|Jump iup↑]] i''Athanasuleas, iConstantine i(2006). i"Sudden icardiac ideath: idirecting ithe iscope iof iresuscitation itowards ithe iheart iand ibrain" i(PDF). iResuscitation. i'''70''' i(1): i44–51. iPMID i16759784 i[[International Standard Serial Number|ISSN]] i0300-9572. iRetrieved i2007-05-02.''
 
24. [[Cardiopulmonary resuscitation#cite%20ref-24|Jump iup↑]] i''Guilfoy, iChristine i(18th iJuly i2006). i"Heart ihas ienough ioxygen ito isurvive ihypothermia". iAmerican iJournal iof iPhysiology i- iHeart iand iCirculatory iPhysiology. iRetrieved i2007-06-14.''
 
25. [[Cardiopulmonary resuscitation#cite%20ref-25|Jump iup↑]] i''Eich, iChristoph i(2005). i"Recovery iof ia ihypothermic idrowned ichild iafter iresuscitation iwith icardiopulmonary ibypass ifollowed iby iprolonged iextracorporeal imembrane ioxygenation" i(PDF). iResuscitation. i'''67''' i(1): i145–8. iPMID i16129537 i[[International Standard Serial Number|ISSN]] i0300-9572 i[[Digital object identifier|doi]]:10.1016/j.resuscitation.2005.05.002. iRetrieved i2007-01-29.''
 
26. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-AHA6%2026-0|<sup>Jump iup ito:26.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-AHA6%2026-1|<sup>26.1</sup>]] i''"CPR istatistics". iAmerican iHeart iAssociation. iRetrieved i2007-06-14.''
 
27. [[Cardiopulmonary resuscitation#cite%20ref-27|Jump iup↑]] i''WebMD iMedical iNews. i"Real iCPR iisn't ieverything iit iseems ito ibe". iRetrieved i2007-06-13.''
 
28. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-AHA7%2028-0|<sup>Jump iup ito:28.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-AHA7%2028-1|<sup>28.1</sup>]] ihttp://www.americanheart.org/presenter.jhtml?identifier=4483
 
29. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-CMAJ%2029-0|<sup>Jump iup ito:29.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-CMAJ%2029-1|<sup>29.1</sup>]] i''Brindley, iPeter iG i(2002-08-20). i"Predictors iof isurvival ifollowing iin-hospital iadult icardiopulmonary irescuitation". iCanadian iMedical iAssociation iJournal. i'''174''' i(4). iRetrieved i2007-06-14.''
 
30. ↑ i[[Cardiopulmonary resuscitation#cite%20ref-RSCUK%2030-0|<sup>Jump iup ito:30.0</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-RSCUK%2030-1|<sup>30.1</sup>]] i[[Cardiopulmonary resuscitation#cite%20ref-RSCUK%2030-2|<sup>30.2</sup>]] i''"Resucitation iCouncil iComment ion iCPR istudy". iResuscitation iCouncil iUK. iApril i2007. iRetrieved i2007-06-14.''
 
31. [[Cardiopulmonary resuscitation#cite%20ref-31|Jump iup↑]] i''"CPREzy". iRetrieved i2007-08-18.''
 
32. [[Cardiopulmonary resuscitation#cite%20ref-32|Jump iup↑]] i''Perkins, iGavin iD i(23rd iAugust i2004). i"CPREzy: ian ievaluation iduring isimulated icardiac iarrest ion ia ihospital ibed" i(PDF). iResuscitation. i'''64''' i(2005).''
 
33. [[Cardiopulmonary resuscitation#cite%20ref-33|Jump iup↑]] i''Boyle, iAndrew iJ i(March i2002). i"CPREzy:an ievaluation iduring isimulated icardiac iarrest ion ia ihospital ibed". iResuscitation. i'''54''' i(2002).''
 
34. [[Cardiopulmonary resuscitation#cite%20ref-34|Jump iup↑]] i''"CPR iGlove iWebsite". iRetrieved i2007-08-18.''
 
35. [[Cardiopulmonary resuscitation#cite%20ref-35|Jump iup↑]] i''Rosenwald, iMike. i"The iglove ithat isaves ilives". iPopular iScience iMagazine. iRetrieved i2007-08-20.''
 
36. [[Cardiopulmonary resuscitation#cite%20ref-36|Jump iup↑]] i''Steen; iet ial. i(2002). i"Evaluation iof iLUCAS, ia inew idevice ifor iautomated imechanical icompression iand iactive idecompression". iResuscitation. i'''55'''.''
 
37. [[Cardiopulmonary resuscitation#cite%20ref-37|Jump iup↑]] i''Rubertsson; iet ial. i(2006). i"Increased irestoration iof ispontaneous icirculation iafter icardiac iarrest iwith ithe iLUCAS idevice icompared ito imanual ichest icompressions". iResuscitation. i'''69'''.''
 
38. [[Cardiopulmonary resuscitation#cite%20ref-38|Jump iup↑]] i''Casner, iM i(Jan–Mar i2005). i"The iimpact iof ia inew iCPR iassist idevice ion ithe irate iof ireturn iof ispontaneous icirculation iin iout-of-hospital icardiac iarrest". iPrehospital iEmergency iCare. i'''9''' i(1).''
 
39. [[Cardiopulmonary resuscitation#cite%20ref-39|Jump iup↑]] i''Hallstrom, iAl. i"Manual ichest icompression ivs iuse iof ian iautomated ichest icompression idevice iduring iresuscitation ifollowing iout-of-hospital icardiac iarrest"(PDF). iJournal iof ithe iAmerican iMedical iAssociation. i'''295''' i(22).''
 
40. [[Cardiopulmonary resuscitation#cite%20ref-40|Jump iup↑]] i''DeNoon, iDaniel iJ i(2007-03-16). i"CPR: iMouth-to-mouth inot imuch ihelp". iRetrieved i2007-06-13.''
 
41. [[Cardiopulmonary resuscitation#cite%20ref-41|Jump iup↑]] i''"A ibetter isort iof iCPR". iRetrieved i2007-06-16.''
 
42. [[Cardiopulmonary resuscitation#cite%20ref-42|Jump iup↑]] i''Ewy, iGordon iA i(24th iNovember i2004). i"A inew iCardiopulmonary iresuscitation". iCirculation. iAmerican iHeart iAssociation. i'''111''' i(2134–2142). iRetrieved i2007-06-15.''
 
43. [[Cardiopulmonary resuscitation#cite%20ref-43|Jump iup↑]] ihttp://www.emsvillage.com/articles/article.cfm?id=2214
 
44. [[Cardiopulmonary resuscitation#cite%20ref-44|Jump iup↑]] i''"ViaHealth iRochester iGeneral iHospital istatement ion i'Cough iCPR' iemail". iRetrieved i2007-06-13.''
 
45. [[Cardiopulmonary resuscitation#cite%20ref-45|Jump iup↑]] i''"Snopes iUrban iLegends iReference i- iCough iCPR". iRetrieved i2007-06-13.''
 
46. [[Cardiopulmonary resuscitation#cite%20ref-46|Jump iup↑]] i''Rieser iM i(1992). i"The iuse iof icough-CPR iin ipatients iwith iacute imyocardial iinfarction". iJ iEmerg iMed. i'''10''' i(3): i291–3. iPMID i1624741.''
 
47. [[Cardiopulmonary resuscitation#cite%20ref-47|Jump iup↑]] i''Associated iPress i(October i31, i2003). i"Cough imay ihelp iduring iheart iattack i-- iTechnique imay iallow ipatients ito istay iconscious, istudy ifinds".''
 
48. [[Cardiopulmonary resuscitation#cite%20ref-48|Jump iup↑]] iAustralian iResuscitation iCouncil iNewsletter i(2003) iVol. i27 iNo. i3 ip. i2; iavailable iat ihttp://www.resus.org.au/newsletters/newsletter_nov_2003.pdf
 
49. [[Cardiopulmonary resuscitation#cite%20ref-49|Jump iup↑]] iAustralian iResuscitation iCouncil iNewsletter i(2005) iVol. i29 iNo. i3 ip. i2; iavailable iat ihttp://www.resus.org.au/newsletters/newsletter_dec2005.pdf
 
50. [[Cardiopulmonary resuscitation#cite%20ref-50|Jump iup↑]] iAustralian iResuscitation iCouncil iNewsletter i(2005) iVol. i29 iNo. i3 ip. i2; iavailable iat ihttp://www.resus.org.au/newsletters/newsletter_dec2005.pdf
 
51. [[Cardiopulmonary resuscitation#cite%20ref-51|Jump iup↑]] i''"Cough iCPR". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
52. [[Cardiopulmonary resuscitation#cite%20ref-52|Jump iup↑]] i''"CPR istatistics". iAmerican iHeart iAssociation. iRetrieved i2007-06-13.''
 
53. [[Cardiopulmonary resuscitation#cite%20ref-53|Jump iup↑]] i''"CPR ifor iCats i& iDogs". iUniversity iof iWashington iSchool iof iMedicine.''


==See also==
==See also==

Revision as of 16:51, 16 June 2020

CPR being performed

WikiDoc Resources for Cardiopulmonary resuscitation

Articles

Most recent articles on Cardiopulmonary resuscitation

Most cited articles on Cardiopulmonary resuscitation

Review articles on Cardiopulmonary resuscitation

Articles on Cardiopulmonary resuscitation in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Cardiopulmonary resuscitation

Images of Cardiopulmonary resuscitation

Photos of Cardiopulmonary resuscitation

Podcasts & MP3s on Cardiopulmonary resuscitation

Videos on Cardiopulmonary resuscitation

Evidence Based Medicine

Cochrane Collaboration on Cardiopulmonary resuscitation

Bandolier on Cardiopulmonary resuscitation

TRIP on Cardiopulmonary resuscitation

Clinical Trials

Ongoing Trials on Cardiopulmonary resuscitation at Clinical Trials.gov

Trial results on Cardiopulmonary resuscitation

Clinical Trials on Cardiopulmonary resuscitation at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Cardiopulmonary resuscitation

NICE Guidance on Cardiopulmonary resuscitation

NHS PRODIGY Guidance

FDA on Cardiopulmonary resuscitation

CDC on Cardiopulmonary resuscitation

Books

Books on Cardiopulmonary resuscitation

News

Cardiopulmonary resuscitation in the news

Be alerted to news on Cardiopulmonary resuscitation

News trends on Cardiopulmonary resuscitation

Commentary

Blogs on Cardiopulmonary resuscitation

Definitions

Definitions of Cardiopulmonary resuscitation

Patient Resources / Community

Patient resources on Cardiopulmonary resuscitation

Discussion groups on Cardiopulmonary resuscitation

Patient Handouts on Cardiopulmonary resuscitation

Directions to Hospitals Treating Cardiopulmonary resuscitation

Risk calculators and risk factors for Cardiopulmonary resuscitation

Healthcare Provider Resources

Symptoms of Cardiopulmonary resuscitation

Causes & Risk Factors for Cardiopulmonary resuscitation

Diagnostic studies for Cardiopulmonary resuscitation

Treatment of Cardiopulmonary resuscitation

Continuing Medical Education (CME)

CME Programs on Cardiopulmonary resuscitation

International

Cardiopulmonary resuscitation en Espanol

Cardiopulmonary resuscitation en Francais

Business

Cardiopulmonary resuscitation in the Marketplace

Patents on Cardiopulmonary resuscitation

Experimental / Informatics

List of terms related to Cardiopulmonary resuscitation

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Synonyms and Keywords: Cardiac resuscitation; Cardiac massage; Heart massage resuscitation

Overview

Cardiopulmonary resuscitation (CPR) is an emergency medical procedure Which can be crucial for saving lives. This is used for victims of cardiac and respiratory arrest. CPR can be performed in hospitals by medical team, or in the community by laypersons or emergency response professionals. CPR consists of artificial blood circulation and artificial respiration (i.e. chest compression and lung ventilation). CPR is generally continued, usually in the presence of advanced life support, until the patient regains a heart beat (called "return of spontaneous circulation" or "ROSC") or is declared dead. CPR is unlikely to restart the heart, but rather its purpose is to maintain a flow of oxygenated blood to the brain and the heart, thereby delaying tissue death and extending the brief window of opportunity for a successful resuscitation without permanent brain damage. Defibrillation and advanced life support are usually needed to restart the heart.

Historical Perspective

  • CPR has been known in theory, if not practice, for many hundreds or even thousands of years; some claim it is described in the Bible, discerning a superficial similarity to CPR in a passage from the Books of Kings (II 4:34), wherein the Hebrew prophet Elisha warms a dead boy's body and "places his mouth over his".
  • The association of a dead body with a cooler temperature lead to popular use of heating a body in hopes of bringing it back to life. This idea gave birth to the Heat Method which included applying hot ashes , hot water and even warm animal excreta.
  • This was followed by the Flagellation Method, which included whipping the patient in attempts to assist them into breathing again .
  • Bellows Method developed by the German-Swiss physician Paracelsus in the 1500s.[1] This method included using a goldsmiths bellows to fill air into a patients chest . This method was used successfully for centuries. Its success was hampered after a French physician Leroy d’Etiolles, in 1829 explained affects of deleterious affects of barotrauma.
  • in the 1700s inspired by the Native Americans called Fumigation that involved blowing tobacco up the rectum in hopes to revive the patient. It was alter discontinued when the the harmful effects of tobacco were explained by Benjamin Brodie in 1811.[2]
  • This was followed by the popularity of hanging a person to expel air out of the lung called Inversion. Roots of this method were inspired from Egyptians used to resuscitate patients after drowning.[1]
  • Barrel Method entailed putting the victim on barrel and rolling him in an effort to compress the chest. This back and forth motion would expel the air and as the compression is relieved to fill the air chest with fresh air.
  • The first use of mouth to mouth resuscitation can be trailed back to the Scottish Surgeon , William Tossach, who used this method to forcefully push air into a collapsed coal-mine worker who walked home after a successful resuscitation in the year 1744.
  • Drowning remaining the leading cause of death resulted in the formation of multiple societies which included The Royal Humane Society .They worked on saving people from drowning, freezing,strangulation and poising by noxious gases.Following its formation in time period of 4 years they claimed that they assisted in saving lives of up-to 150 people. they issued recommendations including warming the patient, removing any thing the patient might be choking on, bellows method along with mouth to mouth and mouth to nostril, rectal or oral fumigation using tobacco and bloodletting.
  • In the 1803 a rather unique method came into being based on therapeutic hypothermia; termed as the Russian Method. This included the burying the victim under a bed of snow.
  • In the 19th century, doctor H. R. Silvester described a method (The Silvester Method) of artificial respiration in which the patient is laid on their back, and their arms are raised above their head to aid inhalation and then pressed against their chest to aid exhalation.[3]The procedure is repeated sixteen times per minute. This type of artificial respiration is occasionally seen in films made in the early part of the 20th century.
Sign showing old Silvester and Holger-Nielson methods of resuscitation
  • A second technique, called the Holger Neilson technique, described in the first edition of the Boy Scout Handbook in the United States in 1911, described a form of artificial respiration where the person was laid on their front, with their head to the side, and a process of lifting their arms and pressing on their back was utilized, essentially the Silvester Method with the patient flipped over. This form is seen well into the 1950s (it is used in an episode of Lassie during the Jeff Miller era), and was often used, sometimes for comedic effect, in theatrical cartoons of the time (see Tom and Jerry's "The Cat and the Mermouse"). This method would continue to be shown, for historical purposes, side-by-side with modern CPR in the Boy Scout Handbook until its ninth edition in 1979.

However it wasn't until the middle of the 20th century that the wider medical community started to recognize and promote it as a key part of resuscitation following cardiac arrest. Peter Safar wrote the book ABC of resuscitation in 1957. In the U.S., it was first promoted as a technique for the public to learn in the 1970s.

Use in Cardiac arrest

The medical term for the condition in which a person's heart has stopped is cardiac arrest[4] (also referred to as cardiorespiratory arrest). CPR is used on patients in cardiac arrest in order to oxygenate the blood and maintain a cardiac output to keep vital organs alive.

Blood circulation and oxygenation are absolute requirements in transporting oxygen to the tissues. The brain may sustain damage after blood flow has been stopped for about four minutes and irreversible damage after about seven minutes. If blood flow ceases for 1 or 2 hours, the cells of the body die unless they get an adequately gradual bloodflow, (provided by cooling and gradual warming, rarely, in nature [such as in a cold stream of water] or by an advanced medical team). Because of that CPR is generally only effective if performed within 7 minutes of the stoppage of blood flow.[5] The heart also rapidly loses the ability to maintain a normal rhythm. Low body temperatures as sometimes seen in drowning prolong the time the brain survives. Following cardiac arrest, effective CPR enables enough oxygen to reach the brain to delay brain death, and allows the heart to remain responsive to defibrillation attempts.

If the patient still has a pulse, but is not breathing, this is called respiratory arrest and artificial respiration is more appropriate. However, since people often have difficulty detecting a pulse, CPR may be used in both cases, especially when taught as first aid (see below).

First aid

CPR is part of the chain of survival, which includes early access (to emergency medical services), early CPR, early defibrillation, and early advanced care.[6] Some first aid trainers also advocate the performance of CPR as part of the choking protocol, if all else has failed.[7]

Sudden cardiac arrest is a leading cause of death, happening to approximately one in 8000 people per annum outside a hospital setting in the USA.[8] CPR can double or triple the victim's chances of survival when commenced immediately (see 'effectiveness' below). According to United States 'Annals of Emergency Medicine', only 25% of victims of a witnessed cardiac arrest are administered CPR by a bystander, with a further 33% receiving some CPR as a result of dispatcher instructions. This leaves 41% of victims receiving no CPR prior to the arrival of the emergency medical services.[9]

Rapid access to defibrillation is also vital. The most common cause of cardiac arrest outside of a hospital is ventricular fibrillation (VF), a potentially fatal arrhythmia that is usually (but not always) caused by a heart attack and is responsive to defibrillation. Other causes of cardiac arrest include drowning, drug overdose, poisoning, electrocution.

First aid training

CPR is taught to the general public in order to increase the chance to CPR being performed in the crucial few minutes before emergency personnel are available. Simple training is the goal of the 2005 guidelines to maximize the prospect that CPR will be performed successfully.

CPR is a practical skill and needs professional instruction followed up by regular practice on a resuscitation mannequin to gain and maintain full competency.

In most CPR classes, a simple mnemonic is used to aid memory of the clinical approach to the unconscious patient and CPR. The most common one used worldwide is ABC which stands for Airway, Breathing and Circulation. This may be built upon with extra information (and letters) and can reach complicated levels such as AcBCDEEEFG, explained further in the main article ABC (medical).

CPR skills are not confined to medical professionals, but are regularly taught to members of the public. Widespread knowledge of CPR has a community benefit, as CPR must be applied quickly after a patients heart has stopped. Early CPR in the community is essential to the prevention of brain damage during a cardiac arrest and increases the chance of survival. CPR maintains the blood flow and perfusion to the brain, buying time until a defibrillator and professional medical help arrives.

It is considered best to obtain training in CPR before a medical emergency occurs, although some modern ambulance dispatchers will talk an untrained lay rescuer through the process over the phone, whilst the crew is en-route. For the most effective results, hands-on training should be given by an expert. This will enable the person to perform CPR more safely and more effectively. Most organizations advocate regular retraining, in order to keep practice in the skills, and to ensure that the person is up to date with the latest guidelines, which change periodically based on the outputs from governing bodies.

First aid training, including CPR is often provided by a community organization or charity (with or without a fee), with international providers including the Red Cross and St. John Ambulance, or more local providers such as St. Andrew's Ambulance Association in Scotland or the American Heart Association in the United States. There are also many commercial organizations, who train members of the public or workers, where the course is paid for by employers who wish, or are required by law, to have trained first aiders on site.

Guidelines

In 2005, new CPR guidelines[10][11] were published by the International Resuscitation Councils, agreed at the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science.[12][13] The primary goal of these changes was to simplify CPR for lay rescuers and healthcare providers alike, to maximise the potential for early resuscitation. The important changes for 2005 were:[8]

  • A universal compression-ventilation ratio (30:2) recommended for all single rescuers of infant (less than one year old), child (1 year old to puberty), and adult (puberty and above) victims (excluding newborns).[14] The primary difference between the age groups is that with adults the rescuer uses two hands for the chest compressions, while with children it is only one, and with infants only two fingers (pointer and middle fingers). Whilst this simplification has been introduced, it has not been universally accepted, and especially amongst healthcare professionals, protocols may still vary.[15]
  • The removal of the emphasis on lay rescuers assessing for pulse or signs of circulation for an unresponsive adult victim, instead taking the absence of normal breathing as the key indicator for commencing CPR.
  • The removal of the protocol in which lay rescuers provide rescue breathing without chest compressions for an adult victim, with all cases such as these being subject to CPR.

Research[10] has shown that lay personnel cannot accurately detect a pulse in about 40% of cases and cannot accurately discern the absence of pulse in about 10%. The pulse check step has been removed from the CPR procedure completely for lay persons and de-emphasized for healthcare professionals.

Classification

Prevalence and Effectiveness

Chance of getting CPR

Various studies suggest that in out of home cardiac arrest, bystanders, lay persons or family members attempt CPR in between 14%[16] and 45%[17] of the time, with a median of 32%. This indicates that around 1/3 of out-of-home arrests have a CPR attempt made on them. However, the effectiveness of this CPR is variable, and the studies suggest only around half of bystander CPR is performed correctly.[18][19]

There is a clear correlation between age and the chance of CPR being commenced, with younger people being far more likely to have CPR attempted on them prior to the arrival of emergency medical services.[16][20] It was also found that CPR was more commonly given by a bystander in public, than when an arrest occurred in the patient's home, although health care professionals are responsible for more than half of out-of-hospital resuscitation attempts.[17] This is supported by further research, which suggests that people with no connection to the victim are more likely to perform CPR than a member of their family.[21]

There is also a correlation between the cause of arrest and the likelihood of bystander CPR being initiated. Lay persons are most likely to give CPR to younger cardiac arrest victims in a public place when it has a medical cause; victims in arrest from trauma, exsanguination or intoxication are less likely to receive CPR.[21]

Chance of getting CPR in time

CPR is only likely to be effective if commenced within 6 minutes after the blood flow stops,[22] because permanent brain cell damage occurs when fresh blood infuses the cells after that time, since the cells of the brain become dormant in as little as 4-6 minutes in an oxygen deprived environment and the cells are unable to survive the reintroduction of oxygen in a traditional resuscitation. Research using cardioplegic blood infusion resulted in a 79.4% survival rate with cardiac arrest intervals of 72±43 minutes, traditional methods achieve a 15% survival rate in this scenario, by comparison. New research is currently needed to determine what role CPR, electroshock, and new advanced gradual resuscitation techniques will have with this new knowledge[23] A notable exception is cardiac arrest occurring in conjunction with exposure to very cold temperatures. Hypothermia seems to protect the victim by slowing down metabolic and physiologic processes, greatly decreasing the tissues' need for oxygen.[24] There are cases where CPR, defibrillation, and advanced warming techniques have revived victims after substantial periods of hypothermia.[25]

Chance of surviving

Used alone, CPR will result in few complete recoveries, and those that do survive often develop serious complications. Estimates vary, but many organizations stress that CPR does not "bring anyone back," it simply preserves the body for defibrillation and advanced life support.[26] However, in the case of "non-shockable" rhythms such as Pulseless Electrical Activity (PEA), defibrillation is not indicated, and the importance of CPR rises. On average, only 5%-10% of people who receive CPR survive.[27] The purpose of CPR is not to "start" the heart, but rather to circulate oxygenated blood, and keep the brain alive until advanced care (especially defibrillation) can be initiated. As many of these patients may have a pulse that is impalpable by the layperson rescuer, the current consensus is to perform CPR on a patient that is not breathing. A pulse check is not required in basic CPR since it is so often missed when present, or even felt when absent, even by health care professionals.

Studies have shown the importance of immediate CPR followed by defibrillation within 3–5 minutes of sudden VF cardiac arrest improve survival. In cities such as Seattle where CPR training is widespread and defibrillation by EMS personnel follows quickly, the survival rate is about 30 percent. In cities such as New York City, without those advantages, the survival rate is only 1-2 percent.[28]

Type of Arrest ROSC Survival Source
Witnessed In-Hospital Cardiac Arrest 48% 22% [29]
Unwitnessed In-Hospital Cardiac Arrest 21% 1% [29]
Bystander Cardiocerebral Resuscitation 40% 6% [30]
Bystander Cardiopulmonary Resuscitation 40% 4% [30]
No Bystander CPR (Ambulance CPR) 15% 2% [30]
Defibrillation within 3-5 minutes 74% 30% [26][28]

Chest compression adjuncts

Several different devices have become available in order to help facilitate rescuers in getting the chest compressions completed correctly. These devices can be split in to three broad groups - timing devices, those that assist the rescuer to achieve the correct technique, especially depth and speed of compressions, and those which take over the process completely.

Timing devices

They can feature a metronome (an item carried by many ambulance crews) in order to assist the rescuer in getting the correct rate. The CPR trainer cited here has timed indicators for pressing on the chest, breathing and changing operators.

Manual Assist devices

These items can be devices to placed on top of the chest, with the rescuers hands going over the device, and a display giving information on depth or force.[31] Several published evaluations of one particular product, known as CPREzy, with these features show that the device can improve the performance of chest compressions.[32][33] More recently, these features have also been combined in to a wearable format, as a glove.[34] This glove also has additional features such as a basic electro-cardiogram device. This device was developed by students as part of their thesis, and has been named as one of the top ten inventions of 2007 in Popular Science magazine.[35]

Automatic devices

There are also some devices available which take over the chest compressions for the rescuer. These devices use techniques such as pneumatics to drive a compressing pad on to the chest of the patient. One such device, known as the LUCAS, was developed at Lund University, is powered by the compressed air cylinders or lines available in ambulances or in hospitals, and has undergone numerous clinical trials, showing a marked improvement in coronary perfusion pressure[36] and return of spontaneous circulation.[37]

Another system called the AutoPulse is electrically powered and uses a large band around the patients chest which contracts in rhythm in order to deliver chest compressions. This is also backed by clinical studies showing increased successful return of spontaneous circulation.[38][39]

Alternative Methods

Cardiocerebral Resuscitation

The International Liaison Committee on Resuscitation (ILCOR) approach described above has been challenged in recent years by advocates for Cardiocerebral Resuscitation (CCR). CCR is simply chest compressions without artificial respiration. The ventilation component of CPR has been a topic of major controversy over the past decade.

In March 2007, a Japanese study in the medical journal The Lancet presented strong evidence that compressing the chest, not MTM ventilation, is the key to helping someone recover from cardiac arrest.[40]

The CCR method is championed by the University of Arizona's Sarver Heart Center, and a recent study by the university,[41] claims a 300% greater success rate over standard CPR.[42] The exceptions were in the case of drowning or drug overdose.

The method of delivering chest compressions remains the same, as does the rate (100 per minute), but the rescuer delivers only the compression element which, the University of Arizona claims, keeps the blood flow moving without the interruption caused by insufflations.

An editorial by Gordon Ewy MD (a proponent of CCR) in the same issue of The Lancet calls for an interim revision of the AHA/ILCOR Guidelines based on the results of the Japanese study, but the next scheduled revision of the Guidelines is not until 2010. The initial response of the AHA was that no interim change is necessary.

Rhythmic Abdominal Compressions

Rhythmic abdominal compression-CPR works by forcing blood from the blood vessels around the abdominal organs, an area known to contain about 25 percent of the body's total blood volume. This blood is then redirected to other sites, including the circulation around the heart. Findings published in the September 2007 issue of the American Journal of Emergency Medicine using pigs found that 60 percent more blood was pumped to the heart using rhythmic abdominal compression-CPR than with standard chest compression-CPR, using the same amount of effort. There was no evidence that rhythmic abdominal compressions damaged the abdominal organs and the risk of rib fracture was avoided. Avoiding mouth-to-mouth breathing and chest compressions eliminates the risk of rib fractures and transfer of infection.[43]

Self-CPR

A form of "self-CPR" termed "Cough CPR" may help a person maintain blood flow to the brain during a heart attack while waiting for medical help to arrive and has been used in a hospital emergency room in cases where "standard CPR" was contraindicated.

"Cough CPR" was the subject of a hoax chain e-mail entitled "How to Survive a Heart Attack When Alone" which wrongly cited "ViaHealth Rochester, Rochester General Hospital" as the source of the technique. Rochester General Hospital has denied any connection with the technique.[44][45]

Rapid coughing has been used in hospitals for brief periods of cardiac arrhythmia on monitored patients. One researcher has recommended that it be taught broadly to the public.[46][47]

However, “cough CPR” cannot be used outside the hospital because the first symptom of cardiac arrest is unconsciousness[48] in which case coughing is impossible. Further, the vast majority of people suffering chest pain from a heart attack will not be in cardiac arrest and CPR is not needed. In these cases attempting “cough CPR” will increase the workload on the heart and may be harmful. When coughing is used on trained and monitored patients in hospitals, it has only been shown to be effective for 90 seconds.[49]

The American Heart Association (AHA) and other resuscitation bodies,[50] do not endorse "Cough CPR", which it terms a misnomer as it is not a form of resuscitation. The AHA does recognize a limited legitimate use of the coughing technique:

"This coughing technique to maintain blood flow during brief arrhythmias has been useful in the hospital, particularly during cardiac catheterization. In such cases the patients ECG is monitored continuously, and a physician is present."[51]

Place in film and television

CPR is often severely misrepresented in movies and television as being highly effective in resuscitating a person who is not breathing and has no circulation.

A 1996 study published in the New England Journal of Medicine showed that CPR success rates in television shows was 75%.[52]

It is important to note that CPR techniques portrayed on television and in film are purposely incorrect. Actors performing simulated CPR will keep their elbows bent, to prevent force from reaching the fictional victim's heart. As well as causing significant local trauma, in theory performing CPR on healthy persons may disrupt heart rhythms.

Application on animals

It is entirely feasible to perform CPR on animals like cats and dogs. The principles and practices are virtually identical to CPR for humans. One is cautioned to only perform CPR on unconscious animals to avoid the risk of being bitten.[53]

References

  1. 1.0 1.1 "CPR through history".
  2. Cambridge University Press 978-0-521-84700-1 - Cardiac Arrest: The Science and Practice of Resuscitation Medicine, Second Edition Edited by Norman A. Paradis, Henry R. Halperin, Karl B. Kern, Volker Wenzel and Douglas A. Chamberlain Excerpt
  3. "Silvester's method". University College London. Retrieved 2007-06-12.
  4. "Definition of Cardiac Arrest". American Heart Association. Retrieved 2007-06-13.
  5. Newsweek 2007-05-07
  6. "Chain of Survival Institute". Retrieved 2007-06-12.
  7. "British Red Cross Basic First Aid Guidelines". Retrieved 2007-06-12.
  8. 8.0 8.1 "Overview of CPR". American Heart Association. Retrieved 2007-06-13.
  9. Hughes, Colleen (25th November 2003). "Study finds factors impeding bystander CPR". Annals of Emergency Medicine (December 2003). Retrieved 2007-06-14. Check date values in: |date= (help)
  10. 10.0 10.1 "Adult Basic Life Support". American Heart Association. Retrieved 2007-06-13.
  11. "Pediatric Basic Life Support". American Heart Association. Retrieved 2007-06-13.
  12. "Adult Basic Life Support". American Heart Association. Retrieved 2007-06-13.
  13. "Pediatric Basic and Advanced Life Support". American Heart Association. Retrieved 2007-06-13.
  14. "Australian Resucitation Council Guidelines as of March 6" (PDF). Retrieved 2007-06-13.
  15. "Resucitation Council UK Paediatric Advanced Life Support Guidelines" (PDF). Retrieved 2007-06-13.
  16. 16.0 16.1 Swor, RA (June 1995). "Bystander CPR, ventricular fibrillation and survival in witnessed, unmonitored out-of-hospital cardiac arrest". Annals of Emergency Medicine. 25 (6): 780-4. PMID:7755200. Unknown parameter |couauthors= ignored (help)
  17. 17.0 17.1 Wik, L (December 1994). "Quality of bystander cardiopulmonary rescucitation influence outcome after prehospital cardiac arrest". Resuscitation. 28 (4): 195–203. PMID: 7740189. Unknown parameter |coauthors= ignored (help)
  18. Van Hoeyweghen, RJ (August 1993). "Quality and efficiency of bystander CPR. Belgian Cerebral Resuscitation Study Group". Resuscitation. 26 (1): 47–52. Text "; Calle P; Martens P; Buylaert WA; Delooz H" ignored (help); Unknown parameter |coauthors= ignored (help)
  19. Gallagher, EJ (December 1995). "Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest". JAMA (24). PMID: 8568985. Unknown parameter |coauthors= ignored (help); Unknown parameter |Volume= ignored (|volume= suggested) (help)
  20. jackson, RE (June 1997). "Who gets bystander cardiopulmonary resuscitation in a witnessed arrest?". Academy of Emergency Medicine. 4 (6): 560–4. PMID: 9189184. Unknown parameter |coauthors= ignored (help)
  21. 21.0 21.1 Bossaert, L (1989). "Bystander cardiopulmonary resuscitation in out-of-hospital cardiac arrest. The Cerebral Resuscitation study group". Resuscitation. 17 (Suppl S55-69). PMID: 2551021. Unknown parameter |coauthors= ignored (help)
  22. Cummins, RO (March 1985). "Survival of out-of-hospital cardiac arrest with early initiation of cardiopulmonary resuscitation". American Journal of Emergency Medicine. 3 (2): 114–9. PMID: 3970766. Unknown parameter |coauthors= ignored (help)
  23. Athanasuleas, Constantine (2006). "Sudden cardiac death: directing the scope of resuscitation towards the heart and brain" (PDF). Resuscitation. 70 (1): 44–51. PMID 16759784 Template:ISSN. Retrieved 2007-05-02. Unknown parameter |coauthors= ignored (help)
  24. Guilfoy, Christine (18th July 2006). "Heart has enough oxygen to survive hypothermia". American Journal of Physiology - Heart and Circulatory Physiology. Retrieved 2007-06-14. Check date values in: |date= (help)
  25. Eich, Christoph (2005). "Recovery of a hypothermic drowned child after resuscitation with cardiopulmonary bypass followed by prolonged extracorporeal membrane oxygenation" (PDF). Resuscitation. 67 (1): 145–8. PMID 16129537 Template:ISSN doi:10.1016/j.resuscitation.2005.05.002. Retrieved 2007-01-29. Unknown parameter |coauthors= ignored (help)
  26. 26.0 26.1 "CPR statistics". American Heart Association. Retrieved 2007-06-14.
  27. WebMD Medical News. "Real CPR isn't everything it seems to be". Retrieved 2007-06-13.
  28. 28.0 28.1 http://www.americanheart.org/presenter.jhtml?identifier=4483
  29. 29.0 29.1 Brindley, Peter G (2002-08-20). "Predictors of survival following in-hospital adult cardiopulmonary rescuitation". Canadian Medical Association Journal. 174 (4). Retrieved 2007-06-14. Unknown parameter |coauthors= ignored (help)
  30. 30.0 30.1 30.2 "Resucitation Council Comment on CPR study". Resuscitation Council UK. April 2007. Retrieved 2007-06-14.
  31. "CPREzy". Retrieved 2007-08-18.
  32. Perkins, Gavin D (23rd August 2004). "CPREzy: an evaluation during simulated cardiac arrest on a hospital bed" (PDF). Resuscitation. 64 (2005). Unknown parameter |coauthors= ignored (help); Check date values in: |date= (help)
  33. Boyle, Andrew J (March 2002). "CPREzy:an evaluation during simulated cardiac arrest on a hospital bed". Resuscitation. 54 (2002). Unknown parameter |coauthors= ignored (help)
  34. "CPR Glove Website". Retrieved 2007-08-18.
  35. Rosenwald, Mike. "The glove that saves lives". Popular Science Magazine. Retrieved 2007-08-20.
  36. Steen; et al. (2002). "Evaluation of LUCAS, a new device for automated mechanical compression and active decompression". Resuscitation. 55.
  37. Rubertsson; et al. (2006). "Increased restoration of spontaneous circulation after cardiac arrest with the LUCAS device compared to manual chest compressions". Resuscitation. 69.
  38. Casner, M (Jan–Mar 2005). "The impact of a new CPR assist device on the rate of return of spontaneous circulation in out-of-hospital cardiac arrest". Prehospital Emergency Care. 9 (1). Unknown parameter |coauthors= ignored (help)
  39. Hallstrom, Al. "Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest" (PDF). Journal of the American Medical Association. 295 (22). Unknown parameter |coauthors= ignored (help)
  40. DeNoon, Daniel J (2007-03-16). "CPR: Mouth-to-mouth not much help". Retrieved 2007-06-13.
  41. "A better sort of CPR". Retrieved 2007-06-16.
  42. Ewy, Gordon A (24th November 2004). "A new Cardiopulmonary resuscitation". Circulation. American Heart Association. 111 (2134–2142). Retrieved 2007-06-15. Check date values in: |date= (help)
  43. http://www.emsvillage.com/articles/article.cfm?id=2214
  44. "ViaHealth Rochester General Hospital statement on 'Cough CPR' email". Retrieved 2007-06-13.
  45. "Snopes Urban Legends Reference - Cough CPR". Retrieved 2007-06-13.
  46. Rieser M (1992). "The use of cough-CPR in patients with acute myocardial infarction". J Emerg Med. 10 (3): 291–3. PMID 1624741. Unknown parameter |month= ignored (help)
  47. Associated Press (October 31, 2003). "Cough may help during heart attack -- Technique may allow patients to stay conscious, study finds".
  48. Australian Resuscitation Council Newsletter (2003) Vol. 27 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_nov_2003.pdf
  49. Australian Resuscitation Council Newsletter (2005) Vol. 29 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_dec2005.pdf
  50. Australian Resuscitation Council Newsletter (2005) Vol. 29 No. 3 p. 2; available at http://www.resus.org.au/newsletters/newsletter_dec2005.pdf
  51. "Cough CPR". American Heart Association. Retrieved 2007-06-13.
  52. "CPR statistics". American Heart Association. Retrieved 2007-06-13.
  53. "CPR for Cats & Dogs". University of Washington School of Medicine.

See also

Template:Emergency medicine

Template:Link FA Template:Link FA ar:انعاش القلب والرئتين bs:Kardiopulmonalna reanimacija ca:Reanimació cardiopulmonar cs:Kardiopulmonální resuscitace de:Herz-Lungen-Wiederbelebung hr:Kardiopulmonalna reanimacija it:Rianimazione cardiopolmonare he:החייאה nl:Reanimatie no:Hjerte-lunge-redning simple:Cardiopulmonary resuscitation sr:Кардиопулмонална реанимација fi:Painelu-puhalluselvytys sv:Hjärt- och lungräddning yi:סי-פי-אר

Template:WikiDoc Sources