COVID-19-associated nausea and vomiting: Difference between revisions
Ifrah Fatima (talk | contribs) |
Ifrah Fatima (talk | contribs) |
||
Line 115: | Line 115: | ||
===Laboratory Findings=== | ===Laboratory Findings=== | ||
* Infectious [[virions]] released from the GI tract can be monitored by real-time [[Reverse transcription polymerase chain reaction|reverse transcriptase polymerase chain reaction]] (rRT-PCR) | |||
* A study by Xiao et al assessed the clinical significance of measuring [[SARS-CoV-2]] RNA in the feces. <ref name="pmid32142773">{{cite journal| author=Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H| title=Evidence for Gastrointestinal Infection of SARS-CoV-2. | journal=Gastroenterology | year= 2020 | volume= 158 | issue= 6 | pages= 1831-1833.e3 | pmid=32142773 | doi=10.1053/j.gastro.2020.02.055 | pmc=7130181 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32142773 }} </ref> | |||
* The fecal test remained positive until 12 days after the disease onset in patients with diarrhea. | |||
* Notably, stool test for [[RNA|viral RNA]] remained positive despite negative respiratory tests. This suggests the possibility of gastrointestinal transmission via the fecal-oral route despite clearance from the respiratory tract. | |||
* It was recommended [[Transmission (medicine)|transmission]]-based precautions for hospitalized COVID-19 patients should be continued till the rRT-PCR for SARS-CoV-2 turns negative. | |||
===Electrocardiogram=== | ===Electrocardiogram=== |
Revision as of 17:37, 28 June 2020
For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
Synonyms and keywords:
Overview
Historical Perspective
- The etiological agent is SARS-CoV-2, named for the similarity of its symptoms to those induced by the severe acute respiratory syndrome, causing coronavirus disease 2019 (COVID-19), is a virus identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China.[1][2]
- The growing number of patients however, suggest that human-to-human transmission is actively occurring.[3][4]
- The outbreak was declared a Public Health Emergency of International Concern on 30 January 2020.
- On March 12, 2020, the World Health Organization declared the COVID-19 outbreak a pandemic.
Classification
There is no established system for the classification of nausea and vomiting in COVID-19.
Pathophysiology
- SARS-CoV-2 uses the Angiotensin-converting enzyme 2 (ACE2) and the serine protease TMPRSS2 receptors for cell entry. These receptors are presently abundantly not only in the lungs but also in the enterocytes of the small intestine.[5][6] Other sites of expression of the receptors in the gastrointestinal tract are-the upper esophagus, liver, and colon. [5]
- Entry of the virus causes disruption of the enterocytes and may lead to inflammation and alteration of intestinal permeability.
- The gastrointestinal symptoms of COVID-19 are thought to arise due to the invasion of enterocytes. [7]
Causes
Disease name] may be caused by [cause1], [cause2], or [cause3].
OR
Common causes of [disease] include [cause1], [cause2], and [cause3].
OR
The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].
OR
The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.
Differentiating ((Page name)) from other Diseases
[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
OR
[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].
Epidemiology and Demographics
- According to a study by Redd et al, the prevalence of nausea in COVID-19 patients was 26%. [8]
The more common GI symptoms were-
- Anorexia- 35 %
- Diarrhea- 34 %
- Another study by Luo et al reported that 16% of patients presented with GI symptoms like diarrhea, nausea, vomiting without any respiratory symptoms. [9]
Risk Factors
Some gastrointestinal factors may predispose patients to infection with COVID-19.
- Inflammatory bowel disease patients- due to use to glucocorticoids, but not TNF-alpha inhibitors [10]
- Increasing age
- Other comorbidities
- Use of glucocorticoids
Screening
There is insufficient evidence to recommend routine screening.
Natural History, Complications, and Prognosis
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
OR
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
OR
Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
Diagnosis
Diagnostic Study of Choice
The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].
OR
The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].
OR
The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].
OR
There are no established criteria for the diagnosis of [disease name].
History and Symptoms
The majority of patients with [disease name] are asymptomatic.
OR
The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].
Physical Examination
Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].
OR
Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
The presence of [finding(s)] on physical examination is diagnostic of [disease name].
OR
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].
Laboratory Findings
- Infectious virions released from the GI tract can be monitored by real-time reverse transcriptase polymerase chain reaction (rRT-PCR)
- A study by Xiao et al assessed the clinical significance of measuring SARS-CoV-2 RNA in the feces. [11]
- The fecal test remained positive until 12 days after the disease onset in patients with diarrhea.
- Notably, stool test for viral RNA remained positive despite negative respiratory tests. This suggests the possibility of gastrointestinal transmission via the fecal-oral route despite clearance from the respiratory tract.
- It was recommended transmission-based precautions for hospitalized COVID-19 patients should be continued till the rRT-PCR for SARS-CoV-2 turns negative.
Electrocardiogram
There are no ECG findings associated with [disease name].
OR
An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
X-ray
There are no x-ray findings associated with [disease name].
OR
An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Echocardiography or Ultrasound
There are no echocardiography/ultrasound findings associated with [disease name].
OR
Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
CT scan
There are no CT scan findings associated with [disease name].
OR
[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
MRI
There are no MRI findings associated with [disease name].
OR
[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Other Imaging Findings
There are no other imaging findings associated with [disease name].
OR
[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
There are no other diagnostic studies associated with [disease name].
OR
[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
There is no treatment for [disease name]; the mainstay of therapy is supportive care.
OR
Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].
OR
The majority of cases of [disease name] are self-limited and require only supportive care.
OR
[Disease name] is a medical emergency and requires prompt treatment.
OR
The mainstay of treatment for [disease name] is [therapy].
OR The optimal therapy for [malignancy name] depends on the stage at diagnosis.
OR
[Therapy] is recommended among all patients who develop [disease name].
OR
Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].
OR
Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].
OR
Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].
OR
Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].
Surgery
Surgical intervention is not recommended for the management of [disease name].
OR
Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]
OR
The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].
OR
The feasibility of surgery depends on the stage of [malignancy] at diagnosis.
OR
Surgery is the mainstay of treatment for [disease or malignancy].
Primary Prevention
There are no established measures for the primary prevention of [disease name].
OR
There are no available vaccines against [disease name].
OR
Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
OR
[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].
Secondary Prevention
There are no established measures for the secondary prevention of [disease name].
OR
Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].
References
- ↑ https://www.cdc.gov/coronavirus/2019-ncov/about/index.html. Missing or empty
|title=
(help) - ↑ Lu, Jian; Cui, Jie; Qian, Zhaohui; Wang, Yirong; Zhang, Hong; Duan, Yuange; Wu, Xinkai; Yao, Xinmin; Song, Yuhe; Li, Xiang; Wu, Changcheng; Tang, Xiaolu (2020). "On the origin and continuing evolution of SARS-CoV-2". National Science Review. doi:10.1093/nsr/nwaa036. ISSN 2095-5138.
- ↑ Huang, Chaolin; Wang, Yeming; Li, Xingwang; Ren, Lili; Zhao, Jianping; Hu, Yi; Zhang, Li; Fan, Guohui; Xu, Jiuyang; Gu, Xiaoying; Cheng, Zhenshun; Yu, Ting; Xia, Jiaan; Wei, Yuan; Wu, Wenjuan; Xie, Xuelei; Yin, Wen; Li, Hui; Liu, Min; Xiao, Yan; Gao, Hong; Guo, Li; Xie, Jungang; Wang, Guangfa; Jiang, Rongmeng; Gao, Zhancheng; Jin, Qi; Wang, Jianwei; Cao, Bin (2020). "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China". The Lancet. 395 (10223): 497–506. doi:10.1016/S0140-6736(20)30183-5. ISSN 0140-6736.
- ↑ https://www.cdc.gov/coronavirus/2019-ncov/about/transmission.html. Missing or empty
|title=
(help) - ↑ 5.0 5.1 D'Amico F, Baumgart DC, Danese S, Peyrin-Biroulet L (2020). "Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management". Clin Gastroenterol Hepatol. doi:10.1016/j.cgh.2020.04.001. PMC 7141637 Check
|pmc=
value (help). PMID 32278065 Check|pmid=
value (help). - ↑ Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z; et al. (2020). "Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus". Gut. 69 (6): 1141–1143. doi:10.1136/gutjnl-2020-320832. PMID 32102928 Check
|pmid=
value (help). - ↑ Wahba L, Jain N, Fire AZ, Shoura MJ, Artiles KL, McCoy MJ; et al. (2020). "An Extensive Meta-Metagenomic Search Identifies SARS-CoV-2-Homologous Sequences in Pangolin Lung Viromes". mSphere. 5 (3). doi:10.1128/mSphere.00160-20. PMC 7203451 Check
|pmc=
value (help). PMID 32376697 Check|pmid=
value (help). - ↑ Redd WD, Zhou JC, Hathorn KE, McCarty TR, Bazarbashi AN, Thompson CC; et al. (2020). "Prevalence and Characteristics of Gastrointestinal Symptoms in Patients with SARS-CoV-2 Infection in the United States: A Multicenter Cohort Study". Gastroenterology. doi:10.1053/j.gastro.2020.04.045. PMC 7195377 Check
|pmc=
value (help). PMID 32333911 Check|pmid=
value (help). - ↑ Luo S, Zhang X, Xu H (2020). "Don't Overlook Digestive Symptoms in Patients With 2019 Novel Coronavirus Disease (COVID-19)". Clin Gastroenterol Hepatol. 18 (7): 1636–1637. doi:10.1016/j.cgh.2020.03.043. PMC 7154217 Check
|pmc=
value (help). PMID 32205220 Check|pmid=
value (help). - ↑ Brenner EJ, Ungaro RC, Gearry RB, Kaplan GG, Kissous-Hunt M, Lewis JD; et al. (2020). "Corticosteroids, but not TNF Antagonists, are Associated with Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Diseases: Results from an International Registry". Gastroenterology. doi:10.1053/j.gastro.2020.05.032. PMC 7233252 Check
|pmc=
value (help). PMID 32425234 Check|pmid=
value (help). - ↑ Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H (2020). "Evidence for Gastrointestinal Infection of SARS-CoV-2". Gastroenterology. 158 (6): 1831–1833.e3. doi:10.1053/j.gastro.2020.02.055. PMC 7130181 Check
|pmc=
value (help). PMID 32142773 Check|pmid=
value (help).