Sandbox:ab: Difference between revisions
(→Causes) |
(→Causes) |
||
Line 35: | Line 35: | ||
The causes of cardiogenic shock related to COVID-19 might include: | The causes of cardiogenic shock related to COVID-19 might include: | ||
* Newly emerging COVID-19 associated myocarditis,cardiac arrhythmias, cardiomyopathy, or an acute coronary syndrome deteriorated into cardiogenic shock | * Newly emerging COVID-19 associated myocarditis, cardiac arrhythmias, cardiomyopathy, or an acute coronary syndrome deteriorated into cardiogenic shock | ||
* Worsening of previous left ventricular failure due to COVID-19 <ref name="MahajanChandra2020">{{cite journal|last1=Mahajan|first1=Kunal|last2=Chandra|first2=K.Sarat|title=Cardiovascular comorbidities and complications associated with coronavirus disease 2019|journal=Medical Journal Armed Forces India|year=2020|issn=03771237|doi=10.1016/j.mjafi.2020.05.004}}</ref> | * Worsening of previous left ventricular failure due to COVID-19 <ref name="MahajanChandra2020">{{cite journal|last1=Mahajan|first1=Kunal|last2=Chandra|first2=K.Sarat|title=Cardiovascular comorbidities and complications associated with coronavirus disease 2019|journal=Medical Journal Armed Forces India|year=2020|issn=03771237|doi=10.1016/j.mjafi.2020.05.004}}</ref> | ||
Revision as of 17:32, 29 June 2020
WikiDoc Resources for Sandbox:ab |
Articles |
---|
Most recent articles on Sandbox:ab |
Media |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Sandbox:ab at Clinical Trials.gov Clinical Trials on Sandbox:ab at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Sandbox:ab
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Sandbox:ab Discussion groups on Sandbox:ab Patient Handouts on Sandbox:ab Directions to Hospitals Treating Sandbox:ab Risk calculators and risk factors for Sandbox:ab
|
Healthcare Provider Resources |
Causes & Risk Factors for Sandbox:ab |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Historical Perspective
- In Italy, for the first time in a 69-year-old patient, who was presented with cardiogenic shock due to COVID-19 infection, myocardial involvement by viral particles was pathologically proved through biopsy. [1]
Classification
There is no specific classification for COVID-19 associated cardiogenic shock. For more information regarding general classification, see the cardiogenic shock classification.
Pathophysiology
Two mechanisms are more probable to contribute to cardiogenic shock related to Covid-19:
- Direct invasion of the virus into the cardiomyocytes
- Cytokine storm activated by T helper cells (Th1 and Th2) and trigger a systemic hyperinflammatory response.[2] [3]
Differentiating COVID-19 associated cardiogenic shock from other Diseases
- Cardiogenic shock related to COVID-19 must be differentiated from other diseases when hemodynamics not changing, such as:
Epidemiology and Demographics
- The prevalence of cardiogenic shock-associated COVID-19 has not yet been reported.There are several anecdotal reports of cardiogenic shock related to COVID-19:
- A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. [1]
- Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:
- A 42-year-old woman, who had dyslipidemia as a cardiovascular risk factor
- A 50-year-old man, without any cardiovascular risk factors, admitted by severe bilateral pneumonia related to COVID-19. After a few hours, he developed cardiogenic shock.
- A 75-year-old man did not have any cardiovascular risk factors and was admitted due to dyspnea, chest pain, and bilateral SARS-CoV-2 pneumonia.
- A 37-year-old woman, obese with a history of deep venous thrombosis, had symptoms of dyspnea and chest pain [6]
Causes
The causes of cardiogenic shock related to COVID-19 might include:
- Newly emerging COVID-19 associated myocarditis, cardiac arrhythmias, cardiomyopathy, or an acute coronary syndrome deteriorated into cardiogenic shock
- Worsening of previous left ventricular failure due to COVID-19 [7]
Natural History, Complications and Prognosis
- The majority of patients with [disease name] remain asymptomatic for [duration/years].
- Early clinical features include [manifestation 1], [manifestation 2], and [manifestation 3].
- If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
- Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
- Prognosis is generally [excellent/good/poor], and the [1/5/10year mortality/survival rate] of patients with [disease name] is approximately [#%].
Diagnosis
Diagnostic Criteria
- The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met:
- [criterion 1]
- [criterion 2]
- [criterion 3]
- [criterion 4]
Symptoms
- [Disease name] is usually asymptomatic.
- Symptoms of [disease name] may include the following:
- [symptom 1]
- [symptom 2]
- [symptom 3]
- [symptom 4]
- [symptom 5]
- [symptom 6]
Physical Examination
- Patients with [disease name] usually appear [general appearance].
- Physical examination may be remarkable for:
- [finding 1]
- [finding 2]
- [finding 3]
- [finding 4]
- [finding 5]
- [finding 6]
Laboratory Findings
- There are no specific laboratory findings associated with [disease name].
- A [positive/negative] [test name] is diagnostic of [disease name].
- An [elevated/reduced] concentration of [serum/blood/urinary/CSF/other] [lab test] is diagnostic of [disease name].
- Other laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
Imaging Findings
- There are no [imaging study] findings associated with [disease name].
- [Imaging study 1] is the imaging modality of choice for [disease name].
- On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
- [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
- [Disease name] may also be diagnosed using [diagnostic study name].
- Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
- There is no treatment for [disease name]; the mainstay of therapy is supportive care.
- The mainstay of therapy for [disease name] is [medical therapy 1] and [medical therapy 2].
- [Medical therapy 1] acts by [mechanism of action 1].
- Response to [medical therapy 1] can be monitored with [test/physical finding/imaging] every [frequency/duration].
Surgery
- Surgery is the mainstay of therapy for [disease name].
- [Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
- [Surgical procedure] can only be performed for patients with [disease stage] [disease name].
Prevention
- There are no primary preventive measures available for [disease name].
- Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
- Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].
References
- ↑ 1.0 1.1 Tavazzi, Guido; Pellegrini, Carlo; Maurelli, Marco; Belliato, Mirko; Sciutti, Fabio; Bottazzi, Andrea; Sepe, Paola Alessandra; Resasco, Tullia; Camporotondo, Rita; Bruno, Raffaele; Baldanti, Fausto; Paolucci, Stefania; Pelenghi, Stefano; Iotti, Giorgio Antonio; Mojoli, Francesco; Arbustini, Eloisa (2020). "Myocardial localization of coronavirus in COVID‐19 cardiogenic shock". European Journal of Heart Failure. 22 (5): 911–915. doi:10.1002/ejhf.1828. ISSN 1388-9842.
- ↑ Siddiqi, Hasan K.; Mehra, Mandeep R. (2020). "COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal". The Journal of Heart and Lung Transplantation. 39 (5): 405–407. doi:10.1016/j.healun.2020.03.012. ISSN 1053-2498.
- ↑ Ye, Qing; Wang, Bili; Mao, Jianhua (2020). "The pathogenesis and treatment of the `Cytokine Storm' in COVID-19". Journal of Infection. 80 (6): 607–613. doi:10.1016/j.jinf.2020.03.037. ISSN 0163-4453.
- ↑ Boukhris, Marouane; Hillani, Ali; Moroni, Francesco; Annabi, Mohamed Salah; Addad, Faouzi; Ribeiro, Marcelo Harada; Mansour, Samer; Zhao, Xiaohui; Ybarra, Luiz Fernando; Abbate, Antonio; Vilca, Luz Maria; Azzalini, Lorenzo (2020). "Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective". Canadian Journal of Cardiology. doi:10.1016/j.cjca.2020.05.018. ISSN 0828-282X.
- ↑ Rajagopal, Keshava; Keller, Steven P.; Akkanti, Bindu; Bime, Christian; Loyalka, Pranav; Cheema, Faisal H.; Zwischenberger, Joseph B.; El Banayosy, Aly; Pappalardo, Federico; Slaughter, Mark S.; Slepian, Marvin J. (2020). "Advanced Pulmonary and Cardiac Support of COVID-19 Patients". Circulation: Heart Failure. 13 (5). doi:10.1161/CIRCHEARTFAILURE.120.007175. ISSN 1941-3289.
- ↑ Sánchez-Recalde, Ángel; Solano-López, Jorge; Miguelena-Hycka, Javier; Martín-Pinacho, Jesús Javier; Sanmartín, Marcelo; Zamorano, José L. (2020). "COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality". Revista Española de Cardiología (English Edition). doi:10.1016/j.rec.2020.04.012. ISSN 1885-5857.
- ↑ Mahajan, Kunal; Chandra, K.Sarat (2020). "Cardiovascular comorbidities and complications associated with coronavirus disease 2019". Medical Journal Armed Forces India. doi:10.1016/j.mjafi.2020.05.004. ISSN 0377-1237.