COVID-19-associated meningitis: Difference between revisions
Line 9: | Line 9: | ||
In December of 2019, unknown cases of pneumonia began to spread in the Wuhan city of China. A Novel coronavirus was isolated from these cases and was later named as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in early January 2020<ref name="pmid31950516">{{cite journal| author=Lu H, Stratton CW, Tang YW| title=Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. | journal=J Med Virol | year= 2020 | volume= 92 | issue= 4 | pages= 401-402 | pmid=31950516 | doi=10.1002/jmv.25678 | pmc=7166628 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31950516 }}</ref>. SARS-CoV-2 seems to be partially similar to severe acute respiratory syndrome coronavirus (SARS) and Middle East respiratory syndrome coronavirus (MERS)<ref name="pmid29052924">{{cite journal| author=Yin Y, Wunderink RG| title=MERS, SARS and other coronaviruses as causes of pneumonia. | journal=Respirology | year= 2018 | volume= 23 | issue= 2 | pages= 130-137 | pmid=29052924 | doi=10.1111/resp.13196 | pmc=7169239 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29052924 }}</ref>'''.''' The SARS-CoV-2 is a positive-strand RNA virus belonging to the Orthocoronavirinae subfamily<ref name="pmid31133031">{{cite journal| author=Schoeman D, Fielding BC| title=Coronavirus envelope protein: current knowledge. | journal=Virol J | year= 2019 | volume= 16 | issue= 1 | pages= 69 | pmid=31133031 | doi=10.1186/s12985-019-1182-0 | pmc=6537279 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31133031 }}</ref>'''.''' The pneumonia disease caused by SARS-CoV-2 was named COVID-19 by WHO. COVID-19 was declared a pandemic by WHO on March 11, 2020 <ref name="pmid31986257">{{cite journal| author=Wang C, Horby PW, Hayden FG, Gao GF| title=A novel coronavirus outbreak of global health concern. | journal=Lancet | year= 2020 | volume= 395 | issue= 10223 | pages= 470-473 | pmid=31986257 | doi=10.1016/S0140-6736(20)30185-9 | pmc=7135038 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31986257 }}</ref>'''.'''To date, around 10 million people have been infected by SARS-COV-2 in more than 215 countries and more than half a million people have been killed by the COVID-19. These numbers are increasing daily. The main mode of transmission for SARS-CoV-2 from person to person is through respiratory droplets'''.''' It can be identified in the samples of sputum, nasal and pharyngeal swabs, bronchoalveolar fluid, blood and faeces, suggesting faecal-oral transmission could be a possible route <ref name="pmid32243607">{{cite journal| author=Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L | display-authors=etal| title=The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. | journal=J Med Virol | year= 2020 | volume= 92 | issue= 7 | pages= 833-840 | pmid=32243607 | doi=10.1002/jmv.25825 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32243607 }}</ref>. COVID-19 has a wide range of clinical manifestations. The clinical symptoms of COVID-19 are predominantly of respiratory. The patient may be asymptomatic or can present with fever, cough, sore throat, fatigue and dyspnea <ref name="pmid32007143">{{cite journal| author=Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y | display-authors=etal| title=Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. | journal=Lancet | year= 2020 | volume= 395 | issue= 10223 | pages= 507-513 | pmid=32007143 | doi=10.1016/S0140-6736(20)30211-7 | pmc=7135076 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32007143 }}</ref>. Majority of COVID-19 cases have been recognized as mild, but severe cases leading to respiratory failure, septic shock, and/or multiple organ dysfunction have also been identified<ref name="pmid32091533">{{cite journal| author=Wu Z, McGoogan JM| title=Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. | journal=JAMA | year= 2020 | volume= | issue= | pages= | pmid=32091533 | doi=10.1001/jama.2020.2648 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32091533 }}</ref>. | In December of 2019, unknown cases of pneumonia began to spread in the Wuhan city of China. A Novel coronavirus was isolated from these cases and was later named as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in early January 2020<ref name="pmid31950516">{{cite journal| author=Lu H, Stratton CW, Tang YW| title=Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. | journal=J Med Virol | year= 2020 | volume= 92 | issue= 4 | pages= 401-402 | pmid=31950516 | doi=10.1002/jmv.25678 | pmc=7166628 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31950516 }}</ref>. SARS-CoV-2 seems to be partially similar to severe acute respiratory syndrome coronavirus (SARS) and Middle East respiratory syndrome coronavirus (MERS)<ref name="pmid29052924">{{cite journal| author=Yin Y, Wunderink RG| title=MERS, SARS and other coronaviruses as causes of pneumonia. | journal=Respirology | year= 2018 | volume= 23 | issue= 2 | pages= 130-137 | pmid=29052924 | doi=10.1111/resp.13196 | pmc=7169239 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29052924 }}</ref>'''.''' The SARS-CoV-2 is a positive-strand RNA virus belonging to the Orthocoronavirinae subfamily<ref name="pmid31133031">{{cite journal| author=Schoeman D, Fielding BC| title=Coronavirus envelope protein: current knowledge. | journal=Virol J | year= 2019 | volume= 16 | issue= 1 | pages= 69 | pmid=31133031 | doi=10.1186/s12985-019-1182-0 | pmc=6537279 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31133031 }}</ref>'''.''' The pneumonia disease caused by SARS-CoV-2 was named COVID-19 by WHO. COVID-19 was declared a pandemic by WHO on March 11, 2020 <ref name="pmid31986257">{{cite journal| author=Wang C, Horby PW, Hayden FG, Gao GF| title=A novel coronavirus outbreak of global health concern. | journal=Lancet | year= 2020 | volume= 395 | issue= 10223 | pages= 470-473 | pmid=31986257 | doi=10.1016/S0140-6736(20)30185-9 | pmc=7135038 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31986257 }}</ref>'''.'''To date, around 10 million people have been infected by SARS-COV-2 in more than 215 countries and more than half a million people have been killed by the COVID-19. These numbers are increasing daily. The main mode of transmission for SARS-CoV-2 from person to person is through respiratory droplets'''.''' It can be identified in the samples of sputum, nasal and pharyngeal swabs, bronchoalveolar fluid, blood and faeces, suggesting faecal-oral transmission could be a possible route <ref name="pmid32243607">{{cite journal| author=Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L | display-authors=etal| title=The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. | journal=J Med Virol | year= 2020 | volume= 92 | issue= 7 | pages= 833-840 | pmid=32243607 | doi=10.1002/jmv.25825 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32243607 }}</ref>. COVID-19 has a wide range of clinical manifestations. The clinical symptoms of COVID-19 are predominantly of respiratory. The patient may be asymptomatic or can present with fever, cough, sore throat, fatigue and dyspnea <ref name="pmid32007143">{{cite journal| author=Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y | display-authors=etal| title=Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. | journal=Lancet | year= 2020 | volume= 395 | issue= 10223 | pages= 507-513 | pmid=32007143 | doi=10.1016/S0140-6736(20)30211-7 | pmc=7135076 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32007143 }}</ref>. Majority of COVID-19 cases have been recognized as mild, but severe cases leading to respiratory failure, septic shock, and/or multiple organ dysfunction have also been identified<ref name="pmid32091533">{{cite journal| author=Wu Z, McGoogan JM| title=Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. | journal=JAMA | year= 2020 | volume= | issue= | pages= | pmid=32091533 | doi=10.1001/jama.2020.2648 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32091533 }}</ref>. | ||
Although rare but spectrum of neurological manifestations have been reported throughout the pandemic. These neurological presentations range from headache, anosmia, encephalitis, meningitis, encephalitis, Guillain Barre syndrome and stroke <ref name="pmid32275288">{{cite journal| author=Mao L, Jin H, Wang M, Hu Y, Chen S, He Q | display-authors=etal| title=Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. | journal=JAMA Neurol | year= 2020 | volume= | issue= | pages= | pmid=32275288 | doi=10.1001/jamaneurol.2020.1127 | pmc=7149362 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32275288 }}</ref>. Meningitis is the inflammation of the coverings of the brain and spinal cord. | Although rare but spectrum of neurological manifestations have been reported throughout the pandemic. These neurological presentations range from headache, anosmia, encephalitis, meningitis, encephalitis, Guillain Barre syndrome and stroke <ref name="pmid32275288">{{cite journal| author=Mao L, Jin H, Wang M, Hu Y, Chen S, He Q | display-authors=etal| title=Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. | journal=JAMA Neurol | year= 2020 | volume= | issue= | pages= | pmid=32275288 | doi=10.1001/jamaneurol.2020.1127 | pmc=7149362 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32275288 }}</ref> <ref name="pmid32574248">{{cite journal| author=Ahmed MU, Hanif M, Ali MJ, Haider MA, Kherani D, Memon GM | display-authors=etal| title=Neurological Manifestations of COVID-19 (SARS-CoV-2): A Review. | journal=Front Neurol | year= 2020 | volume= 11 | issue= | pages= 518 | pmid=32574248 | doi=10.3389/fneur.2020.00518 | pmc=7257377 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32574248 }}</ref>. Meningitis is the inflammation of the coverings of the brain and spinal cord. | ||
==Historical Perspective== | ==Historical Perspective== | ||
[Disease name] was first discovered by [name of scientist], a [nationality + occupation], in [year]/during/following [event]. | [Disease name] was first discovered by [name of scientist], a [nationality + occupation], in [year]/during/following [event]. | ||
Revision as of 04:31, 6 July 2020
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Wajeeha Aiman, M.D.[2]
Synonyms and keywords:
Overview
In December of 2019, unknown cases of pneumonia began to spread in the Wuhan city of China. A Novel coronavirus was isolated from these cases and was later named as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in early January 2020[1]. SARS-CoV-2 seems to be partially similar to severe acute respiratory syndrome coronavirus (SARS) and Middle East respiratory syndrome coronavirus (MERS)[2]. The SARS-CoV-2 is a positive-strand RNA virus belonging to the Orthocoronavirinae subfamily[3]. The pneumonia disease caused by SARS-CoV-2 was named COVID-19 by WHO. COVID-19 was declared a pandemic by WHO on March 11, 2020 [4].To date, around 10 million people have been infected by SARS-COV-2 in more than 215 countries and more than half a million people have been killed by the COVID-19. These numbers are increasing daily. The main mode of transmission for SARS-CoV-2 from person to person is through respiratory droplets. It can be identified in the samples of sputum, nasal and pharyngeal swabs, bronchoalveolar fluid, blood and faeces, suggesting faecal-oral transmission could be a possible route [5]. COVID-19 has a wide range of clinical manifestations. The clinical symptoms of COVID-19 are predominantly of respiratory. The patient may be asymptomatic or can present with fever, cough, sore throat, fatigue and dyspnea [6]. Majority of COVID-19 cases have been recognized as mild, but severe cases leading to respiratory failure, septic shock, and/or multiple organ dysfunction have also been identified[7].
Although rare but spectrum of neurological manifestations have been reported throughout the pandemic. These neurological presentations range from headache, anosmia, encephalitis, meningitis, encephalitis, Guillain Barre syndrome and stroke [8] [9]. Meningitis is the inflammation of the coverings of the brain and spinal cord.
Historical Perspective
[Disease name] was first discovered by [name of scientist], a [nationality + occupation], in [year]/during/following [event].
The association between [important risk factor/cause] and [disease name] was made in/during [year/event].
In [year], [scientist] was the first to discover the association between [risk factor] and the development of [disease name].
In [year], [gene] mutations were first implicated in the pathogenesis of [disease name].
There have been several outbreaks of [disease name], including -----.
In [year], [diagnostic test/therapy] was developed by [scientist] to treat/diagnose [disease name].
Classification
There is no established system for the classification of [disease name].
OR
[Disease name] may be classified according to [classification method] into [number] subtypes/groups: [group1], [group2], [group3], and [group4].
OR
[Disease name] may be classified into [large number > 6] subtypes based on [classification method 1], [classification method 2], and [classification method 3]. [Disease name] may be classified into several subtypes based on [classification method 1], [classification method 2], and [classification method 3].
OR
Based on the duration of symptoms, [disease name] may be classified as either acute or chronic.
OR
If the staging system involves specific and characteristic findings and features: According to the [staging system + reference], there are [number] stages of [malignancy name] based on the [finding1], [finding2], and [finding3]. Each stage is assigned a [letter/number1] and a [letter/number2] that designate the [feature1] and [feature2].
OR
The staging of [malignancy name] is based on the [staging system].
OR
There is no established system for the staging of [malignancy name].
Pathophysiology
The exact pathogenesis of [disease name] is not fully understood.
Causes
Disease name] may be caused by [cause1], [cause2], or [cause3].
OR
Common causes of [disease] include [cause1], [cause2], and [cause3].
OR
The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].
OR
The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.
Differentiating COVID-19-associated meningitis from other Diseases
[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
OR
[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].
Epidemiology and Demographics
The incidence/prevalence of [disease name] is approximately [number range] per 100,000 individuals worldwide.
OR
In [year], the incidence/prevalence of [disease name] was estimated to be [number range] cases per 100,000 individuals worldwide.
OR
In [year], the incidence of [disease name] is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.
Patients of all age groups may develop [disease name].
OR
The incidence of [disease name] increases with age; the median age at diagnosis is [#] years.
OR
[Disease name] commonly affects individuals younger than/older than [number of years] years of age.
OR
[Chronic disease name] is usually first diagnosed among [age group].
OR
[Acute disease name] commonly affects [age group].
There is no racial predilection to [disease name].
OR
[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].
[Disease name] affects men and women equally.
OR
[Gender 1] are more commonly affected by [disease name] than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.
The majority of [disease name] cases are reported in [geographical region].
OR
[Disease name] is a common/rare disease that tends to affect [patient population 1] and [patient population 2].
Risk Factors
There are no established risk factors for [disease name].
OR
The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.
Screening
There is insufficient evidence to recommend routine screening for [disease/malignancy].
OR
According to the [guideline name], screening for [disease name] is not recommended.
OR
According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].
Natural History, Complications, and Prognosis
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
OR
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
OR
Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
Diagnosis
Diagnostic Study of Choice
The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].
OR
The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].
OR
The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].
OR
There are no established criteria for the diagnosis of [disease name].
History and Symptoms
The majority of patients with [disease name] are asymptomatic.
OR
The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].
Physical Examination
Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].
OR
Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
The presence of [finding(s)] on physical examination is diagnostic of [disease name].
OR
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].
Laboratory Findings
An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].
OR
Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
OR
[Test] is usually normal among patients with [disease name].
OR
Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].
OR
There are no diagnostic laboratory findings associated with [disease name].
Electrocardiogram
There are no ECG findings associated with [disease name].
OR
An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
X-ray
There are no x-ray findings associated with [disease name].
OR
An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Echocardiography or Ultrasound
There are no echocardiography/ultrasound findings associated with [disease name].
OR
Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
CT scan
There are no CT scan findings associated with [disease name].
OR
[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
MRI
There are no MRI findings associated with [disease name].
OR
[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Other Imaging Findings
There are no other imaging findings associated with [disease name].
OR
[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
There are no other diagnostic studies associated with [disease name].
OR
[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
There is no treatment for [disease name]; the mainstay of therapy is supportive care.
OR
Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].
OR
The majority of cases of [disease name] are self-limited and require only supportive care.
OR
[Disease name] is a medical emergency and requires prompt treatment.
OR
The mainstay of treatment for [disease name] is [therapy].
OR
The optimal therapy for [malignancy name] depends on the stage at diagnosis.
OR
[Therapy] is recommended among all patients who develop [disease name].
OR
Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].
OR
Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].
OR
Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].
OR
Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].
Surgery
Surgical intervention is not recommended for the management of [disease name].
OR
Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]
OR
The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].
OR
The feasibility of surgery depends on the stage of [malignancy] at diagnosis.
OR
Surgery is the mainstay of treatment for [disease or malignancy].
Primary Prevention
There are no established measures for the primary prevention of [disease name].
OR
There are no available vaccines against [disease name].
OR
Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
OR
[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].
Secondary Prevention
There are no established measures for the secondary prevention of [disease name].
OR
Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].
References
- ↑ Lu H, Stratton CW, Tang YW (2020). "Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle". J Med Virol. 92 (4): 401–402. doi:10.1002/jmv.25678. PMC 7166628 Check
|pmc=
value (help). PMID 31950516. - ↑ Yin Y, Wunderink RG (2018). "MERS, SARS and other coronaviruses as causes of pneumonia". Respirology. 23 (2): 130–137. doi:10.1111/resp.13196. PMC 7169239 Check
|pmc=
value (help). PMID 29052924. - ↑ Schoeman D, Fielding BC (2019). "Coronavirus envelope protein: current knowledge". Virol J. 16 (1): 69. doi:10.1186/s12985-019-1182-0. PMC 6537279 Check
|pmc=
value (help). PMID 31133031. - ↑ Wang C, Horby PW, Hayden FG, Gao GF (2020). "A novel coronavirus outbreak of global health concern". Lancet. 395 (10223): 470–473. doi:10.1016/S0140-6736(20)30185-9. PMC 7135038 Check
|pmc=
value (help). PMID 31986257. - ↑ Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L; et al. (2020). "The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients". J Med Virol. 92 (7): 833–840. doi:10.1002/jmv.25825. PMID 32243607 Check
|pmid=
value (help). - ↑ Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y; et al. (2020). "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study". Lancet. 395 (10223): 507–513. doi:10.1016/S0140-6736(20)30211-7. PMC 7135076 Check
|pmc=
value (help). PMID 32007143 Check|pmid=
value (help). - ↑ Wu Z, McGoogan JM (2020). "Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention". JAMA. doi:10.1001/jama.2020.2648. PMID 32091533 Check
|pmid=
value (help). - ↑ Mao L, Jin H, Wang M, Hu Y, Chen S, He Q; et al. (2020). "Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China". JAMA Neurol. doi:10.1001/jamaneurol.2020.1127. PMC 7149362 Check
|pmc=
value (help). PMID 32275288 Check|pmid=
value (help). - ↑ Ahmed MU, Hanif M, Ali MJ, Haider MA, Kherani D, Memon GM; et al. (2020). "Neurological Manifestations of COVID-19 (SARS-CoV-2): A Review". Front Neurol. 11: 518. doi:10.3389/fneur.2020.00518. PMC 7257377 Check
|pmc=
value (help). PMID 32574248 Check|pmid=
value (help).