Sandbox:ab: Difference between revisions
Line 19: | Line 19: | ||
==Differentiating COVID-19 associated cardiogenic shock from other Diseases== | ==Differentiating COVID-19 associated cardiogenic shock from other Diseases== | ||
*[[Cardiogenic shock]] related to COVID-19 must be differentiated from other diseases when hemodynamics not changing, such as: | *[[Cardiogenic shock]] related to COVID-19 must be differentiated from other diseases when hemodynamics not changing, such as: | ||
:* COVID-19 associated distributive shock | :* COVID-19 associated distributive shock | ||
:* COVID-19 associated hypovolemic shock | :* COVID-19 associated hypovolemic shock | ||
:* COVID-19 associated mixed (distributive and cardiogenic shock) <ref name="BoukhrisHillani2020">{{cite journal|last1=Boukhris|first1=Marouane|last2=Hillani|first2=Ali|last3=Moroni|first3=Francesco|last4=Annabi|first4=Mohamed Salah|last5=Addad|first5=Faouzi|last6=Ribeiro|first6=Marcelo Harada|last7=Mansour|first7=Samer|last8=Zhao|first8=Xiaohui|last9=Ybarra|first9=Luiz Fernando|last10=Abbate|first10=Antonio|last11=Vilca|first11=Luz Maria|last12=Azzalini|first12=Lorenzo|title=Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective|journal=Canadian Journal of Cardiology|year=2020|issn=0828282X|doi=10.1016/j.cjca.2020.05.018}}</ref> <ref name="RajagopalKeller2020">{{cite journal|last1=Rajagopal|first1=Keshava|last2=Keller|first2=Steven P.|last3=Akkanti|first3=Bindu|last4=Bime|first4=Christian|last5=Loyalka|first5=Pranav|last6=Cheema|first6=Faisal H.|last7=Zwischenberger|first7=Joseph B.|last8=El Banayosy|first8=Aly|last9=Pappalardo|first9=Federico|last10=Slaughter|first10=Mark S.|last11=Slepian|first11=Marvin J.|title=Advanced Pulmonary and Cardiac Support of COVID-19 Patients|journal=Circulation: Heart Failure|volume=13|issue=5|year=2020|issn=1941-3289|doi=10.1161/CIRCHEARTFAILURE.120.007175}}</ref> | :* COVID-19 associated mixed (distributive and cardiogenic shock) <ref name="BoukhrisHillani2020">{{cite journal|last1=Boukhris|first1=Marouane|last2=Hillani|first2=Ali|last3=Moroni|first3=Francesco|last4=Annabi|first4=Mohamed Salah|last5=Addad|first5=Faouzi|last6=Ribeiro|first6=Marcelo Harada|last7=Mansour|first7=Samer|last8=Zhao|first8=Xiaohui|last9=Ybarra|first9=Luiz Fernando|last10=Abbate|first10=Antonio|last11=Vilca|first11=Luz Maria|last12=Azzalini|first12=Lorenzo|title=Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective|journal=Canadian Journal of Cardiology|year=2020|issn=0828282X|doi=10.1016/j.cjca.2020.05.018}}</ref> <ref name="RajagopalKeller2020">{{cite journal|last1=Rajagopal|first1=Keshava|last2=Keller|first2=Steven P.|last3=Akkanti|first3=Bindu|last4=Bime|first4=Christian|last5=Loyalka|first5=Pranav|last6=Cheema|first6=Faisal H.|last7=Zwischenberger|first7=Joseph B.|last8=El Banayosy|first8=Aly|last9=Pappalardo|first9=Federico|last10=Slaughter|first10=Mark S.|last11=Slepian|first11=Marvin J.|title=Advanced Pulmonary and Cardiac Support of COVID-19 Patients|journal=Circulation: Heart Failure|volume=13|issue=5|year=2020|issn=1941-3289|doi=10.1161/CIRCHEARTFAILURE.120.007175}}</ref> | ||
{| class="wikitable" | |||
|+ | |||
! | |||
!CO | |||
!PCWP | |||
!SVR | |||
!PAD | |||
|- | |||
|Septic shock | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
!Hypovolemic shock | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
!Cardiogenic shock | |||
| | |||
| | |||
| | |||
| | |||
|} | |||
==Epidemiology and Demographics== | ==Epidemiology and Demographics== | ||
* The prevalence of cardiogenic shock-associated COVID-19 has not yet been reported.There are several anecdotal reports of cardiogenic shock related to COVID-19: | * The prevalence of cardiogenic shock-associated COVID-19 has not yet been reported.There are several anecdotal reports of cardiogenic shock related to COVID-19: | ||
* | * A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. <ref name="TavazziPellegrini2020">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref> | ||
* | * Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including: | ||
** | ** A 42-year-old woman, who had dyslipidemia as a cardiovascular risk factor | ||
** A 50-year-old man, without any cardiovascular risk factors, admitted by severe bilateral pneumonia related to COVID-19. After a few hours, he developed cardiogenic shock. | ** A 50-year-old man, without any cardiovascular risk factors, admitted by severe bilateral pneumonia related to COVID-19. After a few hours, he developed cardiogenic shock. | ||
** A 75-year-old man did not have any cardiovascular risk factors and was admitted due to dyspnea, chest pain, and bilateral SARS-CoV-2 pneumonia. | ** A 75-year-old man did not have any cardiovascular risk factors and was admitted due to dyspnea, chest pain, and bilateral SARS-CoV-2 pneumonia. | ||
Line 52: | Line 80: | ||
The history of patients presented cardiogenic shock related to COVID-19, according to a few anecdotal reports were different. Some did not have any cardiovascular risk factors. | The history of patients presented cardiogenic shock related to COVID-19, according to a few anecdotal reports were different. Some did not have any cardiovascular risk factors. | ||
:*A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. <ref name="TavazziPellegrini2020">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref> | :*A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. <ref name="TavazziPellegrini2020">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref> | ||
Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:<ref name="Sánchez-RecaldeSolano-López2020">{{cite journal|last1=Sánchez-Recalde|first1=Ángel|last2=Solano-López|first2=Jorge|last3=Miguelena-Hycka|first3=Javier|last4=Martín-Pinacho|first4=Jesús Javier|last5=Sanmartín|first5=Marcelo|last6=Zamorano|first6=José L.|title=COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality|journal=Revista Española de Cardiología (English Edition)|year=2020|issn=18855857|doi=10.1016/j.rec.2020.04.012}}</ref> | Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:<ref name="Sánchez-RecaldeSolano-López2020">{{cite journal|last1=Sánchez-Recalde|first1=Ángel|last2=Solano-López|first2=Jorge|last3=Miguelena-Hycka|first3=Javier|last4=Martín-Pinacho|first4=Jesús Javier|last5=Sanmartín|first5=Marcelo|last6=Zamorano|first6=José L.|title=COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality|journal=Revista Española de Cardiología (English Edition)|year=2020|issn=18855857|doi=10.1016/j.rec.2020.04.012}}</ref> |
Revision as of 11:52, 12 July 2020
WikiDoc Resources for Sandbox:ab |
Articles |
---|
Most recent articles on Sandbox:ab |
Media |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Sandbox:ab at Clinical Trials.gov Clinical Trials on Sandbox:ab at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Sandbox:ab
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Sandbox:ab Discussion groups on Sandbox:ab Patient Handouts on Sandbox:ab Directions to Hospitals Treating Sandbox:ab Risk calculators and risk factors for Sandbox:ab
|
Healthcare Provider Resources |
Causes & Risk Factors for Sandbox:ab |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Historical Perspective
- In Italy, for the first time in a 69-year-old patient, who was presented with cardiogenic shock due to COVID-19 infection, myocardial involvement by viral particles was pathologically proved through biopsy. [1]
Classification
There is no specific classification for COVID-19 associated cardiogenic shock. For more information regarding general classification, see the cardiogenic shock classification.
Pathophysiology
Two mechanisms are more probable to contribute to cardiogenic shock related to Covid-19:
- Direct invasion of the virus into the cardiomyocytes
- Cytokine storm activated by T helper cells (Th1 and Th2) and trigger a systemic hyperinflammatory response.[2] [3]
Differentiating COVID-19 associated cardiogenic shock from other Diseases
- Cardiogenic shock related to COVID-19 must be differentiated from other diseases when hemodynamics not changing, such as:
CO | PCWP | SVR | PAD | |
---|---|---|---|---|
Septic shock | ||||
Hypovolemic shock | ||||
Cardiogenic shock |
Epidemiology and Demographics
- The prevalence of cardiogenic shock-associated COVID-19 has not yet been reported.There are several anecdotal reports of cardiogenic shock related to COVID-19:
- A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. [1]
- Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:
- A 42-year-old woman, who had dyslipidemia as a cardiovascular risk factor
- A 50-year-old man, without any cardiovascular risk factors, admitted by severe bilateral pneumonia related to COVID-19. After a few hours, he developed cardiogenic shock.
- A 75-year-old man did not have any cardiovascular risk factors and was admitted due to dyspnea, chest pain, and bilateral SARS-CoV-2 pneumonia.
- A 37-year-old woman, obese with a history of deep venous thrombosis, had symptoms of dyspnea and chest pain [6]
Causes
The causes of cardiogenic shock related to COVID-19 might include:
- Newly emerging COVID-19 associated myocarditis, cardiac arrhythmias, cardiomyopathy, or an acute coronary syndrome deteriorated into cardiogenic shock
- Worsening of previous left ventricular failure due to COVID-19 [7]
Complications and Prognosis
According to an observational study in China, COVID-19 associated cardiogenic shock has a poor prognosis. In spite of using Extracorporeal membrane oxygenation (ECMO), 83% of patients died. [8] [9]
Diagnosis
Diagnostic Criteria
- The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met:
- [criterion 1]
- [criterion 2]
- [criterion 3]
- [criterion 4]
Symptoms
The history of patients presented cardiogenic shock related to COVID-19, according to a few anecdotal reports were different. Some did not have any cardiovascular risk factors.
- A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. [1]
Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:[6]
- A 42-year-old woman, who had dyslipidemia as a cardiovascular risk factor
- A 50-year-old man, without any cardiovascular risk factors, admitted by severe bilateral pneumonia related to COVID-19. After a few hours, he developed cardiogenic shock.
- A 75-year-old man did not have any cardiovascular risk factors and was admitted due to dyspnea, chest pain, and bilateral SARS-CoV-2 pneumonia.
- A 37-year-old woman, obese with a history of deep venous thrombosis, had symptoms of dyspnea and chest pain
Physical Examination
- When Systolic Blood Pressure is lower than 90 mmHg for more than 15 minutes with impaired organ perfusion while Urine output is less than 30 m/hr in a COVID-19 patient cardiogenic shock should be considered.[10]
- Physical examination may be remarkable for Covid-19 associated cardiogenic shock:[11]
- Assessment of consciousness level
- Extremities whether they are warm or cool is helpful for evaluation of cardiogenic shock
- Vital signs (tachycardia and hypotension and tachypnea)
- Evaluation of volume status: CVP (increased JVP), edema
- Skin pallor
Laboratory Findings
- In COVID-19 patients, it is essential to differentiate the shock types. Two tests are more valuable to clarify this, which are elevated in cardiogenic shock related to COVID-19 : [12]
- serum brain natriuretic peptide (BNP)
- Troponin
- The increase of some biomarkers demonstrates poor prognosis, increased mortality, and more severe symptoms in COVID-19 patients:[13]
- cTnT and cTnI levels
- The association of elevated CK-MB and BNP
Electrocardiogram
- There is no specific electrocardiographic finding for cardiogenic shock in COVID-19 patients.
- The ECG can help to find previous cardiac abnormalities and triggering factors, such as acute myocardial infarction, and arrhythmias, which could lead to cardiogenic shock
Imaging Findings
- There are no [imaging study] findings associated with [disease name].
- [Imaging study 1] is the imaging modality of choice for [disease name].
- On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
- [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
- [Disease name] may also be diagnosed using [diagnostic study name].
- Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
- Fluid resuscitation (crystalloid IV fluids are more efficient than colloid solutions)
- Administration of vasopressors and inotropes to stabilize shock
Surgery
- Surgery is the mainstay of therapy for [disease name].
- [Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
- [Surgical procedure] can only be performed for patients with [disease stage] [disease name].
Prevention
- There are no primary preventive measures available for [disease name].
- Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
- Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].
References
- ↑ 1.0 1.1 1.2 Tavazzi, Guido; Pellegrini, Carlo; Maurelli, Marco; Belliato, Mirko; Sciutti, Fabio; Bottazzi, Andrea; Sepe, Paola Alessandra; Resasco, Tullia; Camporotondo, Rita; Bruno, Raffaele; Baldanti, Fausto; Paolucci, Stefania; Pelenghi, Stefano; Iotti, Giorgio Antonio; Mojoli, Francesco; Arbustini, Eloisa (2020). "Myocardial localization of coronavirus in COVID‐19 cardiogenic shock". European Journal of Heart Failure. 22 (5): 911–915. doi:10.1002/ejhf.1828. ISSN 1388-9842.
- ↑ Siddiqi, Hasan K.; Mehra, Mandeep R. (2020). "COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal". The Journal of Heart and Lung Transplantation. 39 (5): 405–407. doi:10.1016/j.healun.2020.03.012. ISSN 1053-2498.
- ↑ Ye, Qing; Wang, Bili; Mao, Jianhua (2020). "The pathogenesis and treatment of the `Cytokine Storm' in COVID-19". Journal of Infection. 80 (6): 607–613. doi:10.1016/j.jinf.2020.03.037. ISSN 0163-4453.
- ↑ Boukhris, Marouane; Hillani, Ali; Moroni, Francesco; Annabi, Mohamed Salah; Addad, Faouzi; Ribeiro, Marcelo Harada; Mansour, Samer; Zhao, Xiaohui; Ybarra, Luiz Fernando; Abbate, Antonio; Vilca, Luz Maria; Azzalini, Lorenzo (2020). "Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective". Canadian Journal of Cardiology. doi:10.1016/j.cjca.2020.05.018. ISSN 0828-282X.
- ↑ Rajagopal, Keshava; Keller, Steven P.; Akkanti, Bindu; Bime, Christian; Loyalka, Pranav; Cheema, Faisal H.; Zwischenberger, Joseph B.; El Banayosy, Aly; Pappalardo, Federico; Slaughter, Mark S.; Slepian, Marvin J. (2020). "Advanced Pulmonary and Cardiac Support of COVID-19 Patients". Circulation: Heart Failure. 13 (5). doi:10.1161/CIRCHEARTFAILURE.120.007175. ISSN 1941-3289.
- ↑ 6.0 6.1 Sánchez-Recalde, Ángel; Solano-López, Jorge; Miguelena-Hycka, Javier; Martín-Pinacho, Jesús Javier; Sanmartín, Marcelo; Zamorano, José L. (2020). "COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality". Revista Española de Cardiología (English Edition). doi:10.1016/j.rec.2020.04.012. ISSN 1885-5857.
- ↑ Mahajan, Kunal; Chandra, K.Sarat (2020). "Cardiovascular comorbidities and complications associated with coronavirus disease 2019". Medical Journal Armed Forces India. doi:10.1016/j.mjafi.2020.05.004. ISSN 0377-1237.
- ↑ Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H; et al. (2020). "Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study". Lancet Respir Med. 8 (5): 475–481. doi:10.1016/S2213-2600(20)30079-5. PMC 7102538 Check
|pmc=
value (help). PMID 32105632 Check|pmid=
value (help). - ↑ Takahashi M, Arai H, Kokubo T, Furukawa F, Kurata Y, Ito N (1980). "An ultrastructural study of precancerous and cancerous lesions of the pancreas in Syrian golden hamsters induced by N-nitrosobis(2-oxopropyl)amine". Gan. 71 (6): 825–31. PMID 7274628.
- ↑ Dhakal, Bishnu P.; Sweitzer, Nancy K.; Indik, Julia H.; Acharya, Deepak; William, Preethi (2020). "SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart". Heart, Lung and Circulation. doi:10.1016/j.hlc.2020.05.101. ISSN 1443-9506.
- ↑ Tse, FirstName (2011). Oxford Desk Reference : Cardiology. Oxford: OUP Oxford. ISBN 978-0-19-956809-3.
- ↑ Lal, Sean; Hayward, Christopher S.; De Pasquale, Carmine; Kaye, David; Javorsky, George; Bergin, Peter; Atherton, John J.; Ilton, Marcus K.; Weintraub, Robert G.; Nair, Priya; Rudas, Mate; Dembo, Lawrence; Doughty, Robert N.; Kumarasinghe, Gayathri; Juergens, Craig; Bannon, Paul G.; Bart, Nicole K.; Chow, Clara K.; Lattimore, Jo-Dee; Kritharides, Leonard; Totaro, Richard; Macdonald, Peter S. (2020). "COVID-19 and Acute Heart Failure: Screening the Critically Ill – A Position Statement of the Cardiac Society of Australia and New Zealand (CSANZ)". Heart, Lung and Circulation. doi:10.1016/j.hlc.2020.04.005. ISSN 1443-9506.
- ↑ Aboughdir, Maryam; Kirwin, Thomas; Abdul Khader, Ashiq; Wang, Brian (2020). "Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review". Viruses. 12 (5): 527. doi:10.3390/v12050527. ISSN 1999-4915.