COVID-19-associated cardiogenic shock: Difference between revisions

Jump to navigation Jump to search
Line 82: Line 82:


==Screening==
==Screening==
There is no evidence to recommend routine screening for COVID-19-associated cardiogenic shock.
There is insufficient evidence to recommend routine screening for COVID-19-associated cardiogenic shock.
 


== Complications and Prognosis==
== Complications and Prognosis==

Revision as of 23:45, 13 July 2020

For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19-associated cardiogenic shock On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19-associated cardiogenic shock

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19-associated cardiogenic shock

CDC on COVID-19-associated cardiogenic shock

COVID-19-associated cardiogenic shock in the news

Blogs on COVID-19-associated cardiogenic shock

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19-associated cardiogenic shock

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: : Alieh Behjat, M.D.[2]

Synonyms and keywords:: Novel coronavirus, COVID-19, Wuhan coronavirus, coronavirus disease-19, coronavirus disease 2019, SARS-CoV-2, COVID-19, 2019-nCoV, 2019 novel coronavirus, cardiovascular finding in COVID-19, cardiogenic shock, COVID-19 associated cardiogenic shock

Overview

In Italy, for the first time in a 69-year-old patient, who was presented with cardiogenic shock due to COVID-19 infection myocardial involvement by viral particles was pathologically proved through biopsy. Two mechanisms are more probable to contribute to cardiogenic shock related to Covid-19 that includes direct invasion and cytokine storm. According to a recent study, one-third of critically ill patients with COVID-19 of an ICU in Washington State had clinical signs of cardiogenic shock and cardiomyopathy. According to an observational study in China, COVID-19 associated cardiogenic shock has a poor prognosis.

Historical Perspective

  • On March 12, 2020, the WHO declared coronavirus disease 2019(COVID-19) outbreak to be a pandemic.[1]
  • In Italy, for the first time in a 69-year-old patient, who was presented with cardiogenic shock due to COVID-19 infection, myocardial involvement by viral particles was pathologically proved through biopsy. [2]

Classification

Pathophysiology

Two mechanisms are more probable to contribute to cardiogenic shock related to Covid-19:[3] [4]

Causes

The causes of cardiogenic shock related to COVID-19 might include: [5] [6]


Differentiating COVID-19 associated cardiogenic shock from other Diseases

Cardiac Output Pulmonary Capillary Wedge Pressure Systemic Vascular Resistance Pulmonary artery diastolic pressure SVO2
Septic shock
Hypovolemic shock
Cardiogenic shock ↑↔

Epidemiology and Demographics

Age

Gender

Race

Risk Factors

Screening

There is insufficient evidence to recommend routine screening for COVID-19-associated cardiogenic shock.

Complications and Prognosis

According to an observational study in China, COVID-19 associated cardiogenic shock has a poor prognosis. In spite of using Extracorporeal membrane oxygenation (ECMO), 83% of patients died. [12] [13]

Diagnosis

Diagnostic Study of Choice

The diagnosis of cardiogenic shock related to COVID-19 is made when Systolic Blood Pressure is lower than 90 mmHg for more than 15 minutes with impaired organ perfusion while Urine output is less than 30 m/hr in a COVID-19 patient.[13]

History and Symptoms:

The history of patients presented cardiogenic shock related to COVID-19, according to a few anecdotal reports were different. Some did not have any cardiovascular risk factors.

  • A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. [2]

Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:[11]

Physical Examination

Laboratory Findings

  • The increase of some biomarkers demonstrates poor prognosis, increased mortality, and more severe symptoms in COVID-19 patients:[16]

Electrocardiogram


X-ray

Echocardiography or Ultrasound


CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Cardiogenic shock medical therapy:

Mechanical Support:

Prevention

References

  1. "Coronavirus (COVID-19) events as they happen".
  2. 2.0 2.1 2.2 Tavazzi, Guido; Pellegrini, Carlo; Maurelli, Marco; Belliato, Mirko; Sciutti, Fabio; Bottazzi, Andrea; Sepe, Paola Alessandra; Resasco, Tullia; Camporotondo, Rita; Bruno, Raffaele; Baldanti, Fausto; Paolucci, Stefania; Pelenghi, Stefano; Iotti, Giorgio Antonio; Mojoli, Francesco; Arbustini, Eloisa (2020). "Myocardial localization of coronavirus in COVID‐19 cardiogenic shock". European Journal of Heart Failure. 22 (5): 911–915. doi:10.1002/ejhf.1828. ISSN 1388-9842.
  3. Siddiqi, Hasan K.; Mehra, Mandeep R. (2020). "COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal". The Journal of Heart and Lung Transplantation. 39 (5): 405–407. doi:10.1016/j.healun.2020.03.012. ISSN 1053-2498.
  4. Ye, Qing; Wang, Bili; Mao, Jianhua (2020). "The pathogenesis and treatment of the `Cytokine Storm' in COVID-19". Journal of Infection. 80 (6): 607–613. doi:10.1016/j.jinf.2020.03.037. ISSN 0163-4453.
  5. Mahajan, Kunal; Chandra, K.Sarat (2020). "Cardiovascular comorbidities and complications associated with coronavirus disease 2019". Medical Journal Armed Forces India. doi:10.1016/j.mjafi.2020.05.004. ISSN 0377-1237.
  6. Belhadjer, Zahra; Méot, Mathilde; Bajolle, Fanny; Khraiche, Diala; Legendre, Antoine; Abakka, Samya; Auriau, Johanne; Grimaud, Marion; Oualha, Mehdi; Beghetti, Maurice; Wacker, Julie; Ovaert, Caroline; Hascoet, Sebastien; Selegny, Maëlle; Malekzadeh-Milani, Sophie; Maltret, Alice; Bosser, Gilles; Giroux, Nathan; Bonnemains, Laurent; Bordet, Jeanne; Di Filippo, Sylvie; Mauran, Pierre; Falcon-Eicher, Sylvie; Thambo, Jean-Benoît; Lefort, Bruno; Moceri, Pamela; Houyel, Lucile; Renolleau, Sylvain; Bonnet, Damien (2020). "Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic". Circulation. doi:10.1161/CIRCULATIONAHA.120.048360. ISSN 0009-7322.
  7. Boukhris, Marouane; Hillani, Ali; Moroni, Francesco; Annabi, Mohamed Salah; Addad, Faouzi; Ribeiro, Marcelo Harada; Mansour, Samer; Zhao, Xiaohui; Ybarra, Luiz Fernando; Abbate, Antonio; Vilca, Luz Maria; Azzalini, Lorenzo (2020). "Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective". Canadian Journal of Cardiology. doi:10.1016/j.cjca.2020.05.018. ISSN 0828-282X.
  8. Rajagopal, Keshava; Keller, Steven P.; Akkanti, Bindu; Bime, Christian; Loyalka, Pranav; Cheema, Faisal H.; Zwischenberger, Joseph B.; El Banayosy, Aly; Pappalardo, Federico; Slaughter, Mark S.; Slepian, Marvin J. (2020). "Advanced Pulmonary and Cardiac Support of COVID-19 Patients". Circulation: Heart Failure. 13 (5). doi:10.1161/CIRCHEARTFAILURE.120.007175. ISSN 1941-3289.
  9. Jameson, J (2018). Harrison's principles of internal medicine. New York: McGraw-Hill Education. ISBN 1259644030.
  10. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M; et al. (2020). "Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State". JAMA. doi:10.1001/jama.2020.4326. PMC 7082763 Check |pmc= value (help). PMID 32191259 Check |pmid= value (help).
  11. 11.0 11.1 Sánchez-Recalde, Ángel; Solano-López, Jorge; Miguelena-Hycka, Javier; Martín-Pinacho, Jesús Javier; Sanmartín, Marcelo; Zamorano, José L. (2020). "COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality". Revista Española de Cardiología (English Edition). doi:10.1016/j.rec.2020.04.012. ISSN 1885-5857.
  12. 12.0 12.1 Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H; et al. (2020). "Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study". Lancet Respir Med. 8 (5): 475–481. doi:10.1016/S2213-2600(20)30079-5. PMC 7102538 Check |pmc= value (help). PMID 32105632 Check |pmid= value (help).
  13. 13.0 13.1 Dhakal, Bishnu P.; Sweitzer, Nancy K.; Indik, Julia H.; Acharya, Deepak; William, Preethi (2020). "SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart". Heart, Lung and Circulation. doi:10.1016/j.hlc.2020.05.101. ISSN 1443-9506.
  14. Tse, FirstName (2011). Oxford Desk Reference : Cardiology. Oxford: OUP Oxford. ISBN 978-0-19-956809-3.
  15. 15.0 15.1 Lal, Sean; Hayward, Christopher S.; De Pasquale, Carmine; Kaye, David; Javorsky, George; Bergin, Peter; Atherton, John J.; Ilton, Marcus K.; Weintraub, Robert G.; Nair, Priya; Rudas, Mate; Dembo, Lawrence; Doughty, Robert N.; Kumarasinghe, Gayathri; Juergens, Craig; Bannon, Paul G.; Bart, Nicole K.; Chow, Clara K.; Lattimore, Jo-Dee; Kritharides, Leonard; Totaro, Richard; Macdonald, Peter S. (2020). "COVID-19 and Acute Heart Failure: Screening the Critically Ill – A Position Statement of the Cardiac Society of Australia and New Zealand (CSANZ)". Heart, Lung and Circulation. doi:10.1016/j.hlc.2020.04.005. ISSN 1443-9506.
  16. Aboughdir, Maryam; Kirwin, Thomas; Abdul Khader, Ashiq; Wang, Brian (2020). "Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review". Viruses. 12 (5): 527. doi:10.3390/v12050527. ISSN 1999-4915.
  17. Tse, FirstName (2011). Oxford Desk Reference : Cardiology. Oxford: OUP Oxford. ISBN 978-0-19-956809-3.
  18. Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P (2020). "SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart". Heart Lung Circ. doi:10.1016/j.hlc.2020.05.101. PMC 7274628 Check |pmc= value (help). PMID 32601020 Check |pmid= value (help).
  19. MacLaren, Graeme; Fisher, Dale; Brodie, Daniel (2020). "Preparing for the Most Critically Ill Patients With COVID-19". JAMA. 323 (13): 1245. doi:10.1001/jama.2020.2342. ISSN 0098-7484.

Template:WS Template:WH