COVID-19 interventions: Difference between revisions
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
===Non-Invasive ventilation (NIV)=== | ===Non-Invasive ventilation (NIV)=== | ||
*Both HFNC and NIPPV methods used in [[COVID-19]] patients generate [[aerosols]]. So, in addition to regular precautions such as the use of [[PPE]] followed during [[COVID-19]] pandemic following precautions as advised by [[CDC]] to prevent [[Airborne transmission|airborne]] transmission should be taken:<ref name="urlTransmission-Based Precautions | Basics | Infection Control | CDC”">{{cite web |url=https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.html |title=Transmission-Based Precautions | Basics | Infection Control | CDC” |format= |work= |accessdate=}}</ref> | *Both HFNC and NIPPV methods used in [[COVID-19]] patients generate [[aerosols]]. Concerns have been raised for a possible risk for transmission of [[COVID-19]] to health care personnel.<ref name="pmid32442035">{{cite journal |vauthors=Schünemann HJ, Khabsa J, Solo K, Khamis AM, Brignardello-Petersen R, El-Harakeh A, Darzi A, Hajizadeh A, Bognanni A, Bak A, Izcovich A, Cuello-Garcia CA, Chen C, Borowiack E, Chamseddine F, Schünemann F, Morgano GP, Muti-Schünemann GEU, Chen G, Zhao H, Neumann I, Brozek J, Schmidt J, Hneiny L, Harrison L, Reinap M, Junek M, Santesso N, El-Khoury R, Thomas R, Nieuwlaat R, Stalteri R, Yaacoub S, Lotfi T, Baldeh T, Piggott T, Zhang Y, Saad Z, Rochwerg B, Perri D, Fan E, Stehling F, Akl IB, Loeb M, Garner P, Aston S, Alhazzani W, Szczeklik W, Chu DK, Akl EA |title=Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence |journal=Ann. Intern. Med. |volume= |issue= |pages= |date=May 2020 |pmid=32442035 |pmc=7281716 |doi=10.7326/M20-2306 |url=}}</ref> But with the judicious use of the standard precautions and protective measures, the results for aforementioned interventions have been promising. So, in addition to regular precautions such as the use of [[PPE]] followed during [[COVID-19]] pandemic following precautions as advised by [[CDC]] to prevent [[Airborne transmission|airborne]] transmission should be taken:<ref name="urlTransmission-Based Precautions | Basics | Infection Control | CDC”">{{cite web |url=https://www.cdc.gov/infectioncontrol/basics/transmission-based-precautions.html |title=Transmission-Based Precautions | Basics | Infection Control | CDC” |format= |work= |accessdate=}}</ref> | ||
**[[Airborne transmission|Airborne infection]] isolation room (AIIR) | **[[Airborne transmission|Airborne infection]] isolation room (AIIR) | ||
**Restricting susceptible healthcare personnel | **Restricting susceptible healthcare personnel | ||
Line 32: | Line 32: | ||
**In [[COVID-19]] positive adult [[patients]] with acute [[respiratory failure|hypoxemic respiratory failure]] despite [[oxygen therapy|supplemental oxygen therapy]], a weak recommendation suggests using HFNC over conventional [[oxygen therapy]]. A systematic review and meta-analysis of 9 [[Randomized controlled trial|RCTs]] showed that High Flow Nasal Cannula (HFNC) reduces the need for [[intubation]]. | **In [[COVID-19]] positive adult [[patients]] with acute [[respiratory failure|hypoxemic respiratory failure]] despite [[oxygen therapy|supplemental oxygen therapy]], a weak recommendation suggests using HFNC over conventional [[oxygen therapy]]. A systematic review and meta-analysis of 9 [[Randomized controlled trial|RCTs]] showed that High Flow Nasal Cannula (HFNC) reduces the need for [[intubation]]. | ||
**A weak recommendation (low-quality evidence) also prefers using HFNC over [[Positive airway pressure|Non-invasive positive pressure ventilation (NIPPV)]]. It is possibly due to reduced [[mortality rate|mortality]] and decreased [[intubation]] risk, as proved by a [[Randomized controlled trial|RCT]] and a meta-analysis respectively. [[Patient]] comfort better oxygenation with HFNC than NIPPV is also one of the considering factors.<ref name="FratThille2015">{{cite journal|last1=Frat|first1=Jean-Pierre|last2=Thille|first2=Arnaud W.|last3=Mercat|first3=Alain|last4=Girault|first4=Christophe|last5=Ragot|first5=Stéphanie|last6=Perbet|first6=Sébastien|last7=Prat|first7=Gwénael|last8=Boulain|first8=Thierry|last9=Morawiec|first9=Elise|last10=Cottereau|first10=Alice|last11=Devaquet|first11=Jérôme|last12=Nseir|first12=Saad|last13=Razazi|first13=Keyvan|last14=Mira|first14=Jean-Paul|last15=Argaud|first15=Laurent|last16=Chakarian|first16=Jean-Charles|last17=Ricard|first17=Jean-Damien|last18=Wittebole|first18=Xavier|last19=Chevalier|first19=Stéphanie|last20=Herbland|first20=Alexandre|last21=Fartoukh|first21=Muriel|last22=Constantin|first22=Jean-Michel|last23=Tonnelier|first23=Jean-Marie|last24=Pierrot|first24=Marc|last25=Mathonnet|first25=Armelle|last26=Béduneau|first26=Gaëtan|last27=Delétage-Métreau|first27=Céline|last28=Richard|first28=Jean-Christophe M.|last29=Brochard|first29=Laurent|last30=Robert|first30=René|title=High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure|journal=New England Journal of Medicine|volume=372|issue=23|year=2015|pages=2185–2196|issn=0028-4793|doi=10.1056/NEJMoa1503326}}</ref> | **A weak recommendation (low-quality evidence) also prefers using HFNC over [[Positive airway pressure|Non-invasive positive pressure ventilation (NIPPV)]]. It is possibly due to reduced [[mortality rate|mortality]] and decreased [[intubation]] risk, as proved by a [[Randomized controlled trial|RCT]] and a meta-analysis respectively. [[Patient]] comfort better oxygenation with HFNC than NIPPV is also one of the considering factors.<ref name="FratThille2015">{{cite journal|last1=Frat|first1=Jean-Pierre|last2=Thille|first2=Arnaud W.|last3=Mercat|first3=Alain|last4=Girault|first4=Christophe|last5=Ragot|first5=Stéphanie|last6=Perbet|first6=Sébastien|last7=Prat|first7=Gwénael|last8=Boulain|first8=Thierry|last9=Morawiec|first9=Elise|last10=Cottereau|first10=Alice|last11=Devaquet|first11=Jérôme|last12=Nseir|first12=Saad|last13=Razazi|first13=Keyvan|last14=Mira|first14=Jean-Paul|last15=Argaud|first15=Laurent|last16=Chakarian|first16=Jean-Charles|last17=Ricard|first17=Jean-Damien|last18=Wittebole|first18=Xavier|last19=Chevalier|first19=Stéphanie|last20=Herbland|first20=Alexandre|last21=Fartoukh|first21=Muriel|last22=Constantin|first22=Jean-Michel|last23=Tonnelier|first23=Jean-Marie|last24=Pierrot|first24=Marc|last25=Mathonnet|first25=Armelle|last26=Béduneau|first26=Gaëtan|last27=Delétage-Métreau|first27=Céline|last28=Richard|first28=Jean-Christophe M.|last29=Brochard|first29=Laurent|last30=Robert|first30=René|title=High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure|journal=New England Journal of Medicine|volume=372|issue=23|year=2015|pages=2185–2196|issn=0028-4793|doi=10.1056/NEJMoa1503326}}</ref> | ||
====Non-Invasive Positive Pressure Ventilation (NIPPV)==== | ====Non-Invasive Positive Pressure Ventilation (NIPPV)==== | ||
Line 46: | Line 46: | ||
*The Chinese [[CDC]] reports the case-fatality rate to be higher than 50% in [[patients]] who received invasive mechanical ventilation.<ref name="WuMcGoogan2020">{{cite journal|last1=Wu|first1=Zunyou|last2=McGoogan|first2=Jennifer M.|title=Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China|journal=JAMA|volume=323|issue=13|year=2020|pages=1239|issn=0098-7484|doi=10.1001/jama.2020.2648}}</ref> | *The Chinese [[CDC]] reports the case-fatality rate to be higher than 50% in [[patients]] who received invasive mechanical ventilation.<ref name="WuMcGoogan2020">{{cite journal|last1=Wu|first1=Zunyou|last2=McGoogan|first2=Jennifer M.|title=Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China|journal=JAMA|volume=323|issue=13|year=2020|pages=1239|issn=0098-7484|doi=10.1001/jama.2020.2648}}</ref> | ||
*According to the American Society of Anesthesiology based upon the experience of Chinese anesthesiologists, timely (neither premature nor late) [[intubation]] and ventilation most effectual breathing assistance.<ref name="urlStrategies for health care response to COVID-19 shared by Chinese anesthesiologists">{{cite web |url=https://www.asahq.org/about-asa/newsroom/news-releases/2020/03/strategies-for-health-care-response-to-covid-19-shared-by-chinese-anesthesiologists |title=Strategies for health care response to COVID-19 shared by Chinese anesthesiologists |format= |work= |accessdate=}}</ref> | *According to the American Society of Anesthesiology based upon the experience of Chinese anesthesiologists, timely (neither premature nor late) [[intubation]] and ventilation most effectual breathing assistance.<ref name="urlStrategies for health care response to COVID-19 shared by Chinese anesthesiologists">{{cite web |url=https://www.asahq.org/about-asa/newsroom/news-releases/2020/03/strategies-for-health-care-response-to-covid-19-shared-by-chinese-anesthesiologists |title=Strategies for health care response to COVID-19 shared by Chinese anesthesiologists |format= |work= |accessdate=}}</ref> | ||
* Mechanical ventilation can be used in patients who have labored breathing and are unable to maintain adequate gaseous exchange leading to [[hypoxemia]] and/or [[hypercapnia]]. | |||
* Common clinical indications of mechanical ventilation include moderate to severe [[dyspnea]], [[respiratory rate]] (RR) > 24-30/min, accessory muscle use for breathing, and abdominal paradox. It may also be used in patients who have an inadequate arterial partial pressure of oxygen or critically low PaO2 (PaO2 < 70 mm Hg), hypercapnia PaCO2 > 45 mm Hg, and PaO2/FiO2 ≤ 300 (corrected for altitude). | |||
====Ventilator settings==== | ====Ventilator settings==== | ||
The following ventilator setting should be used: | |||
*'''Mode''': No mode of ventilation has been suggested to be superior to others.<ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> | *'''Mode''': No mode of ventilation has been suggested to be superior to others.<ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> | ||
*'''[[Positive end-expiratory pressure|positive end-expiratory pressure (PEEP)]]''': The commonly used [[PEEP]] in the [[COVID-19]] patients in Wuhan, China was less than 10 cm H2O. It is advised that after lung recruitment maneuvers, is to set PEEP at 20 cm H2O and titrate down in a decrement of 2 to 3 cm H2O each time until the goals of oxygenation, plateau pressure, and compliance are all achieved. <ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> | *'''[[Positive end-expiratory pressure|positive end-expiratory pressure (PEEP)]]''': The commonly used [[PEEP]] in the [[COVID-19]] patients in Wuhan, China was less than 10 cm H2O. It is advised that after lung recruitment maneuvers, is to set PEEP at 20 cm H2O and titrate down in a decrement of 2 to 3 cm H2O each time until the goals of oxygenation, plateau pressure, and compliance are all achieved. <ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> The [[COVID-19-associated acute respiratory distress syndrome|CARDS]] Ventilator [[PEEP]] Titration Protocol can be viewed by [https://www.nebraskamed.com/sites/default/files/documents/covid-19/ards-ventilator-peep-titration-protocol.pdf?date=03242020 clicking here]. | ||
**''Contraindications'' for the use of the [[PEEP]] may include untreated [[pneumothorax]], [[hypotension|very low blood pressure]], elevated [[intracranial pressures|ICP]], and [[pulmonary hypertension]]. | |||
* | **''Complications'' of [[PEEP]] may include [[barotrauma]], such as [[pneumothorax]] and/or decreased [[cardiac output]]. | ||
* | *'''[[Lung volumes#Measurement and values|Tidal volume]] (Vt)''': Upto a maximum of 6 ml/kg of ideal body weight and lower inspiratory pressures. | ||
* Plateau pressure (Pplat) < 28 to 30 cm H2O | |||
*PEEP must be as high as possible to maintain the driving pressure (Pplat-PEEP) as low as possible (< 14 cmH2O) | |||
*Use of paralytics is not recommended unless PaO2/FiO2 < 150 mmHg. | |||
Revision as of 14:45, 19 July 2020
For COVID-19 frequently asked outpatient questions, click here
For COVID-19 frequently asked inpatient questions, click here
COVID-19 Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
COVID-19 interventions On the Web |
American Roentgen Ray Society Images of COVID-19 interventions |
Risk calculators and risk factors for COVID-19 interventions |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Javaria Anwer M.D.[2]
Synonyms and keywords: SARS Cov2 interventions, Interventions in covid19, Novel coronavirus interventions
Overview
The feasibility of the strategy used for the management of a patient with COVID-19 depends on the patients' condition at the time of Continuous evaluation and titration of ongoing interventions ensures optimal results. The respiratory manifestations of COVID-19 may require some oxygen supplementation to ventilaroty support.
Ventilatory support in COVID-19
- The COVID-19 respiratory complications that may require mechanical ventilation include: COVID-19-associated pneumonia, COVID-19-associated acute respiratory distress syndrome (CARDS) and COVID-19-associated respiratory failure. At the start, the recommendation to treat CARDS was similar to the ones used to treat ARDS due to other causes. Improved knowledge and experience of the disease led the guidelines to be modified.
- Acute hypoxemic respiratory failure and ARDS are more common respiratory complications in COVID-19 patients.[1]
Supplemental Oxygen
- Surviving Sepsis Campaign has the following recommendations regarding the use of supplemental oxygen in COVID-19 patients:[1]
- It is strongly recommended (with moderate-quality evidence) to start the supplemental oxygen if the Spo2 is < 90% in adults. A weak recommendation states starting the supplemental oxygen at < 92% saturation.
- In COVID-19 positive adult patients with acute hypoxemic respiratory failure on supplemental oxygen therapy, Spo2 should be maintained no higher than 96% (strong recommendation by Surviving Sepsis Campaign). This based upon the systematic review and meta-analysis of 25 RCTs that showed a linear association between the death risk and higher Spo2 targets.
Non-Invasive ventilation (NIV)
- Both HFNC and NIPPV methods used in COVID-19 patients generate aerosols. Concerns have been raised for a possible risk for transmission of COVID-19 to health care personnel.[2] But with the judicious use of the standard precautions and protective measures, the results for aforementioned interventions have been promising. So, in addition to regular precautions such as the use of PPE followed during COVID-19 pandemic following precautions as advised by CDC to prevent airborne transmission should be taken:[3]
- Airborne infection isolation room (AIIR)
- Restricting susceptible healthcare personnel
- Limiting transport and movement of the patient
- Use of fit-tested NIOSH-approved N95 or higher level respirator for healthcare personnel.
- Close monitoring for a deteriorating respiratory status and early intubation when indicated, in a controlled setting can help minimize the infection of health personnel and promise better patient health outcomes.[1]
High Flow Nasal Cannula (HFNC)
- Also known as high flow nasal oxygen (HFNO) or Heated humidified high-flow (HHHF) therapy is a non-invasive technique. It is a technique of delivering heated and humidified high-flow oxygen via soft and flexible nasal prongs. Humidification prevents the drying of epithelium and facilitates the removal of mucosal secretions. Other advantages include pharyngeal dead space washout and PEEP effect.[4]
- Surviving Sepsis Campaign has the following recommendations regarding the use of HFNC in COVID-19 patients:[1]
- In COVID-19 positive adult patients with acute hypoxemic respiratory failure despite supplemental oxygen therapy, a weak recommendation suggests using HFNC over conventional oxygen therapy. A systematic review and meta-analysis of 9 RCTs showed that High Flow Nasal Cannula (HFNC) reduces the need for intubation.
- A weak recommendation (low-quality evidence) also prefers using HFNC over Non-invasive positive pressure ventilation (NIPPV). It is possibly due to reduced mortality and decreased intubation risk, as proved by a RCT and a meta-analysis respectively. Patient comfort better oxygenation with HFNC than NIPPV is also one of the considering factors.[5]
Non-Invasive Positive Pressure Ventilation (NIPPV)
- Non-invasive positive pressure ventilation (NIPPV) is a technique utilized for delivering mechanical ventilation without the use of endotracheal intubation or tracheostomy. It can be administered through a face mask, nasal mask, or a helmet.
- Many patients who develop ARDS receive a trial of non-invasive positive pressure ventilation (NIPPV) before intubation for mechanical ventilation before they clinically deteriorate or become unable to maintain adequate oxygenation.
- Studies from China reported (4% to 13%) of COVID-19 patients to have received non-invasive positive pressure ventilation (NIPPV).[1]
- Surviving Sepsis Campaign (SSC) has the following recommendations regarding the use of Non-invasive positive pressure ventilation (NIPPV) in adult COVID-19 patient with hypoxemic respiratory failure:[1]
- A weak recommendation (very low-quality evidence) suggests a trial of NIPPV, if HFNC is not available and endotracheal intubation not urgently indicated. with close monitoring and short-interval assessment for worsening of respiratory failure.
- The SSC demonstrated its uncertainty regarding the safety and efficacy of helmet NIPPV in SARS Cov2 patients. Another study advocates and recommends the use of helmet NIPPV in COVID-19 care due to potential avoidance of air dispersion through the spring-valve.[6] Having said that, the cost of a helmet may be an essential consideration for healthcare systems struggling financially.
Invasive Mechanical Ventilation (IMV)
- The vascular endothelial injury in COVID-19-associated acute respiratory distress syndrome (CARDS) and diverse mortality rates across the world in CARDS patients arbitrates the importance of different mechanical ventilation strategies.
- The Chinese CDC reports the case-fatality rate to be higher than 50% in patients who received invasive mechanical ventilation.[7]
- According to the American Society of Anesthesiology based upon the experience of Chinese anesthesiologists, timely (neither premature nor late) intubation and ventilation most effectual breathing assistance.[8]
- Mechanical ventilation can be used in patients who have labored breathing and are unable to maintain adequate gaseous exchange leading to hypoxemia and/or hypercapnia.
- Common clinical indications of mechanical ventilation include moderate to severe dyspnea, respiratory rate (RR) > 24-30/min, accessory muscle use for breathing, and abdominal paradox. It may also be used in patients who have an inadequate arterial partial pressure of oxygen or critically low PaO2 (PaO2 < 70 mm Hg), hypercapnia PaCO2 > 45 mm Hg, and PaO2/FiO2 ≤ 300 (corrected for altitude).
Ventilator settings
The following ventilator setting should be used:
- Mode: No mode of ventilation has been suggested to be superior to others.[9]
- positive end-expiratory pressure (PEEP): The commonly used PEEP in the COVID-19 patients in Wuhan, China was less than 10 cm H2O. It is advised that after lung recruitment maneuvers, is to set PEEP at 20 cm H2O and titrate down in a decrement of 2 to 3 cm H2O each time until the goals of oxygenation, plateau pressure, and compliance are all achieved. [9] The CARDS Ventilator PEEP Titration Protocol can be viewed by clicking here.
- Contraindications for the use of the PEEP may include untreated pneumothorax, very low blood pressure, elevated ICP, and pulmonary hypertension.
- Complications of PEEP may include barotrauma, such as pneumothorax and/or decreased cardiac output.
- Tidal volume (Vt): Upto a maximum of 6 ml/kg of ideal body weight and lower inspiratory pressures.
- Plateau pressure (Pplat) < 28 to 30 cm H2O
- PEEP must be as high as possible to maintain the driving pressure (Pplat-PEEP) as low as possible (< 14 cmH2O)
- Use of paralytics is not recommended unless PaO2/FiO2 < 150 mmHg.
Marini et al. suggest
- Lower PEEP: “type L,” characterized by low lung elastance (high compliance), lower lung weight as estimated by CT scan, and a low response to PEEP
- Higher PEEP: Initially it was recommended that the guidelines for ARDS must be followed for respiratory support in SARS Cov2 patients. But the data from China helped inform and reform regarding the strategies. In Wuhan, patients with acute hypoxemic respiratory failure due to COVID-19 have a poor tolerance to high PEEP, likely as the result of the direct and severe lung damage by the virus and inflammatory reactions.[9]
Stratagies to improve oxygenation
Prone position ventilation
- Prone positioning is thought to improve oxygenation by improving ventilation/perfusion (V/Q) mismatching via reduced shunting of blood through under-ventilated lung tissue.
- Research has shown that prone position ventilation in ARDS patients with acute hypoxemic respiratory failure and spontaneous or assisted breathing reduces the mortality by 28 and 90-days.[10]
- The strategy was widely used in COVID-19 patients in Wuhan, China.[9]
- Prone position is an early strategy rather than a desperate rescue therapy.[11] A study by Lin Ding et al. suggests that the early application of prone ventilation with HFNC and NIV, especially in COVID-19 patients with moderate ARDS, can help avoid intubation.[12]
- Prone position for awake patients during spontaneous or assisted breathing during NIPPV or HFNC with mild-moderate ARDS was associated with an improved oxygenation.[13] In addition, patients with an Spo2 of 95% or greater after an hour of the prone position had a lower rate of intubation.[14] To answer the question about the effectiveness, two RCTs are in progress NCT04347941 and NCT04350723.[11]
- The American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice and Surviving Sepsis Campaign guidelines strongly recommend (moderate evidence) Prone positioning for more than 12 hours/day in patients with severe ARDS.[15][16]
{{#ev:youtube|https://www.youtube.com/watch?v=lcBPaHQUvXY}}
Special considerationss
- Intubation: Chest auscultation after intubation is not recommended due to aerosol transmission of the virus. Capnography, fogging inside of the endotracheal tube, chest movement, Spo2, the color of the patient’s skin and mucous membrane, and vigilance are used to differentiate between a failed and successful intubation. .[9]
- Lung recruitment maneauvers:
In patients suffering from COVID-19, airways management can be high-risk due to aerosol-based transmission for the following reasons:
- Combative or agitated patient secondary to hypoxia
- Personal protective equipment may need to be removed
- Clinicians in close proximity to the patient's airway may be at risk
- Larygoscopy and intubation may become high risk secondary to aerosol generation
Aerosol Generation Risk Factors and Protective Measures
Route of Aerosol Generation | Protective Measures |
---|---|
Coughing |
|
Face Mask Seal Leak |
|
Inadequate Seal With Positive Pressure Ventilation | |
High Flow Nasal Oxygen |
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Alhazzani, Waleed; Møller, Morten Hylander; Arabi, Yaseen M.; Loeb, Mark; Gong, Michelle Ng; Fan, Eddy; Oczkowski, Simon; Levy, Mitchell M.; Derde, Lennie; Dzierba, Amy; Du, Bin; Aboodi, Michael; Wunsch, Hannah; Cecconi, Maurizio; Koh, Younsuck; Chertow, Daniel S.; Maitland, Kathryn; Alshamsi, Fayez; Belley-Cote, Emilie; Greco, Massimiliano; Laundy, Matthew; Morgan, Jill S.; Kesecioglu, Jozef; McGeer, Allison; Mermel, Leonard; Mammen, Manoj J.; Alexander, Paul E.; Arrington, Amy; Centofanti, John E.; Citerio, Giuseppe; Baw, Bandar; Memish, Ziad A.; Hammond, Naomi; Hayden, Frederick G.; Evans, Laura; Rhodes, Andrew (2020). "Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)". Critical Care Medicine. 48 (6): e440–e469. doi:10.1097/CCM.0000000000004363. ISSN 0090-3493.
- ↑ Schünemann HJ, Khabsa J, Solo K, Khamis AM, Brignardello-Petersen R, El-Harakeh A, Darzi A, Hajizadeh A, Bognanni A, Bak A, Izcovich A, Cuello-Garcia CA, Chen C, Borowiack E, Chamseddine F, Schünemann F, Morgano GP, Muti-Schünemann G, Chen G, Zhao H, Neumann I, Brozek J, Schmidt J, Hneiny L, Harrison L, Reinap M, Junek M, Santesso N, El-Khoury R, Thomas R, Nieuwlaat R, Stalteri R, Yaacoub S, Lotfi T, Baldeh T, Piggott T, Zhang Y, Saad Z, Rochwerg B, Perri D, Fan E, Stehling F, Akl IB, Loeb M, Garner P, Aston S, Alhazzani W, Szczeklik W, Chu DK, Akl EA (May 2020). "Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence". Ann. Intern. Med. doi:10.7326/M20-2306. PMC 7281716 Check
|pmc=
value (help). PMID 32442035 Check|pmid=
value (help). Vancouver style error: initials (help) - ↑ "Transmission-Based Precautions | Basics | Infection Control | CDC"".
- ↑ Zhang J, Lin L, Pan K, Zhou J, Huang X (December 2016). "High-flow nasal cannula therapy for adult patients". J. Int. Med. Res. 44 (6): 1200–1211. doi:10.1177/0300060516664621. PMC 5536739. PMID 27698207.
- ↑ Frat, Jean-Pierre; Thille, Arnaud W.; Mercat, Alain; Girault, Christophe; Ragot, Stéphanie; Perbet, Sébastien; Prat, Gwénael; Boulain, Thierry; Morawiec, Elise; Cottereau, Alice; Devaquet, Jérôme; Nseir, Saad; Razazi, Keyvan; Mira, Jean-Paul; Argaud, Laurent; Chakarian, Jean-Charles; Ricard, Jean-Damien; Wittebole, Xavier; Chevalier, Stéphanie; Herbland, Alexandre; Fartoukh, Muriel; Constantin, Jean-Michel; Tonnelier, Jean-Marie; Pierrot, Marc; Mathonnet, Armelle; Béduneau, Gaëtan; Delétage-Métreau, Céline; Richard, Jean-Christophe M.; Brochard, Laurent; Robert, René (2015). "High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure". New England Journal of Medicine. 372 (23): 2185–2196. doi:10.1056/NEJMoa1503326. ISSN 0028-4793.
- ↑ Cabrini L, Landoni G, Zangrillo A (February 2020). "Minimise nosocomial spread of 2019-nCoV when treating acute respiratory failure". Lancet. 395 (10225): 685. doi:10.1016/S0140-6736(20)30359-7. PMC 7137083 Check
|pmc=
value (help). PMID 32059800 Check|pmid=
value (help). - ↑ Wu, Zunyou; McGoogan, Jennifer M. (2020). "Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China". JAMA. 323 (13): 1239. doi:10.1001/jama.2020.2648. ISSN 0098-7484.
- ↑ 9.0 9.1 9.2 9.3 9.4 Meng, Lingzhong; Qiu, Haibo; Wan, Li; Ai, Yuhang; Xue, Zhanggang; Guo, Qulian; Deshpande, Ranjit; Zhang, Lina; Meng, Jie; Tong, Chuanyao; Liu, Hong; Xiong, Lize (2020). "Intubation and Ventilation amid the COVID-19 Outbreak". Anesthesiology. 132 (6): 1317–1332. doi:10.1097/ALN.0000000000003296. ISSN 0003-3022.
- ↑ Xie H, Zhou ZG, Jin W, Yuan CB, Du J, Lu J, Wang RL (2018). "Ventilator management for acute respiratory distress syndrome associated with avian influenza A (H7N9) virus infection: A case series". World J Emerg Med. 9 (2): 118–124. doi:10.5847/wjem.j.1920-8642.2018.02.006. PMC 5847497. PMID 29576824.
- ↑ 11.0 11.1 Telias, Irene; Katira, Bhushan H.; Brochard, Laurent (2020). "Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?". JAMA. 323 (22): 2265. doi:10.1001/jama.2020.8539. ISSN 0098-7484.
- ↑ Ding L, Wang L, Ma W, He H (January 2020). "Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study". Crit Care. 24 (1): 28. doi:10.1186/s13054-020-2738-5. PMC 6993481 Check
|pmc=
value (help). PMID 32000806 Check|pmid=
value (help). - ↑ Sartini, Chiara; Tresoldi, Moreno; Scarpellini, Paolo; Tettamanti, Andrea; Carcò, Francesco; Landoni, Giovanni; Zangrillo, Alberto (2020). "Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit". JAMA. 323 (22): 2338. doi:10.1001/jama.2020.7861. ISSN 0098-7484.
- ↑ Thompson, Alison E.; Ranard, Benjamin L.; Wei, Ying; Jelic, Sanja (2020). "Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure". JAMA Internal Medicine. doi:10.1001/jamainternmed.2020.3030. ISSN 2168-6106.
- ↑ Fan, Eddy; Del Sorbo, Lorenzo; Goligher, Ewan C.; Hodgson, Carol L.; Munshi, Laveena; Walkey, Allan J.; Adhikari, Neill K. J.; Amato, Marcelo B. P.; Branson, Richard; Brower, Roy G.; Ferguson, Niall D.; Gajic, Ognjen; Gattinoni, Luciano; Hess, Dean; Mancebo, Jordi; Meade, Maureen O.; McAuley, Daniel F.; Pesenti, Antonio; Ranieri, V. Marco; Rubenfeld, Gordon D.; Rubin, Eileen; Seckel, Maureen; Slutsky, Arthur S.; Talmor, Daniel; Thompson, B. Taylor; Wunsch, Hannah; Uleryk, Elizabeth; Brozek, Jan; Brochard, Laurent J. (2017). "An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome". American Journal of Respiratory and Critical Care Medicine. 195 (9): 1253–1263. doi:10.1164/rccm.201703-0548ST. ISSN 1073-449X.
- ↑ Rhodes, Andrew; Evans, Laura E.; Alhazzani, Waleed; Levy, Mitchell M.; Antonelli, Massimo; Ferrer, Ricard; Kumar, Anand; Sevransky, Jonathan E.; Sprung, Charles L.; Nunnally, Mark E.; Rochwerg, Bram; Rubenfeld, Gordon D.; Angus, Derek C.; Annane, Djillali; Beale, Richard J.; Bellinghan, Geoffrey J.; Bernard, Gordon R.; Chiche, Jean-Daniel; Coopersmith, Craig; De Backer, Daniel P.; French, Craig J.; Fujishima, Seitaro; Gerlach, Herwig; Hidalgo, Jorge Luis; Hollenberg, Steven M.; Jones, Alan E.; Karnad, Dilip R.; Kleinpell, Ruth M.; Koh, Younsuk; Lisboa, Thiago Costa; Machado, Flavia R.; Marini, John J.; Marshall, John C.; Mazuski, John E.; McIntyre, Lauralyn A.; McLean, Anthony S.; Mehta, Sangeeta; Moreno, Rui P.; Myburgh, John; Navalesi, Paolo; Nishida, Osamu; Osborn, Tiffany M.; Perner, Anders; Plunkett, Colleen M.; Ranieri, Marco; Schorr, Christa A.; Seckel, Maureen A.; Seymour, Christopher W.; Shieh, Lisa; Shukri, Khalid A.; Simpson, Steven Q.; Singer, Mervyn; Thompson, B. Taylor; Townsend, Sean R.; Van der Poll, Thomas; Vincent, Jean-Louis; Wiersinga, W. Joost; Zimmerman, Janice L.; Dellinger, R. Phillip (2017). "Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016". Intensive Care Medicine. 43 (3): 304–377. doi:10.1007/s00134-017-4683-6. ISSN 0342-4642.