Anemia of prematurity pathophysiology: Difference between revisions

Jump to navigation Jump to search
Asra (talk | contribs)
No edit summary
Asra (talk | contribs)
No edit summary
Line 10: Line 10:
The [[pathogenesis]] of [[anemia of prematurity]] is multifactorial. [[Anemia of prematurity]] is the result of a combination of decreased [[erythropoietin]] production, increased [[erythropoietin]] [[metabolism]], deficient [[iron]] stores, decreased [[RBC]] lifespan, and blood loss during [[phlebotomy]].<ref name="pmid6502312">{{cite journal| author=Stockman JA, Graeber JE, Clark DA, McClellan K, Garcia JF, Kavey RE| title=Anemia of prematurity: determinants of the erythropoietin response. | journal=J Pediatr | year= 1984 | volume= 105 | issue= 5 | pages= 786-92 | pmid=6502312 | doi=10.1016/s0022-3476(84)80308-x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6502312  }} </ref><ref name="pmid20817366">{{cite journal| author=Strauss RG| title=Anaemia of prematurity: pathophysiology and treatment. | journal=Blood Rev | year= 2010 | volume= 24 | issue= 6 | pages= 221-5 | pmid=20817366 | doi=10.1016/j.blre.2010.08.001 | pmc=2981681 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20817366  }} </ref>
The [[pathogenesis]] of [[anemia of prematurity]] is multifactorial. [[Anemia of prematurity]] is the result of a combination of decreased [[erythropoietin]] production, increased [[erythropoietin]] [[metabolism]], deficient [[iron]] stores, decreased [[RBC]] lifespan, and blood loss during [[phlebotomy]].<ref name="pmid6502312">{{cite journal| author=Stockman JA, Graeber JE, Clark DA, McClellan K, Garcia JF, Kavey RE| title=Anemia of prematurity: determinants of the erythropoietin response. | journal=J Pediatr | year= 1984 | volume= 105 | issue= 5 | pages= 786-92 | pmid=6502312 | doi=10.1016/s0022-3476(84)80308-x | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6502312  }} </ref><ref name="pmid20817366">{{cite journal| author=Strauss RG| title=Anaemia of prematurity: pathophysiology and treatment. | journal=Blood Rev | year= 2010 | volume= 24 | issue= 6 | pages= 221-5 | pmid=20817366 | doi=10.1016/j.blre.2010.08.001 | pmc=2981681 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20817366  }} </ref>
===Physiological anemia in newborns===
===Physiological anemia in newborns===
Normally, all the [[newborns]] experience a fall in the [[haemoglobin]] concentration during the first few weeks of life. Healthy, [[fullterm]] [[infants]] usually develop [[anemia]] around 10-12 weeks of life after birth. [[Hemoglobin]] concentration never falls below 10 g/dl in healthy infants. Physiological anemia is well tolerated by and does not require any therapy.<ref name="pmid20817366">{{cite journal| author=Strauss RG| title=Anaemia of prematurity: pathophysiology and treatment. | journal=Blood Rev | year= 2010 | volume= 24 | issue= 6 | pages= 221-5 | pmid=20817366 | doi=10.1016/j.blre.2010.08.001 | pmc=2981681 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20817366  }} </ref>
Normally, all the [[newborns]] experience a fall in the [[haemoglobin]] concentration during the first few weeks of life. Healthy, [[full-term]] [[infants]] usually develop [[anemia]] around 10-12 weeks of life after birth. [[Hemoglobin]] concentration never falls below 10 g/dl in healthy [[infants]]. [[Physiological anemia]] is well tolerated and does not require any therapy.<ref name="pmid20817366">{{cite journal| author=Strauss RG| title=Anaemia of prematurity: pathophysiology and treatment. | journal=Blood Rev | year= 2010 | volume= 24 | issue= 6 | pages= 221-5 | pmid=20817366 | doi=10.1016/j.blre.2010.08.001 | pmc=2981681 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20817366  }} </ref>


*After birth, an [[embryo]] transitions from a [[hypoxic]] state in-utero to an [[infant]] in a relatively hyperoxic environment
*After birth, an [[embryo]] transitions from a [[hypoxic]] state [[in-utero]] to an [[infant]] in a relatively hyperoxic environment
*This transition leads to an increase in [[blood oxygen]] and [[tissue oxygen]] concentration in [[newborns]]
*This transition leads to an increase in [[blood oxygen]] and [[tissue oxygen]] concentration in [[newborns]]
*Increased [[oxygen]] concentration inhibits [[erythropoietin]] production and eventually stops [[erythropoiesis]]
*Increased [[oxygen]] concentration inhibits [[erythropoietin]] production and eventually stops [[erythropoiesis]]
*Due to the rapid growth and disproportionate RBC production, [[hemoglobin]] levels fall gradually in infants
*Due to the rapid growth and disproportionate [[RBC production]], [[hemoglobin]] levels fall gradually in infants
*The drop in [[hemoglobin]] concentration continues until the [[tissue hypoxia]] develops which usually takes around 6-12weeks after birth
*The drop in [[hemoglobin]] concentration continues until the [[tissue hypoxia]] develops which usually takes around 6-12weeks after birth
*[[Tissue hypoxia]] activates the [[oxygen sensors]] present in the [[kidney]] and [[liver]] to stimulate the [[erythropoietin]] and [[red blood cells]] production
*[[Tissue hypoxia]] activates the [[oxygen sensors]] present in the [[kidney]] and [[liver]] to stimulate the [[erythropoietin]] and [[red blood cells]] (RBC) production
*[[Fullterm newborns]] have enough iron stores for [[erythropoiesis]] until 20 weeks of life
*[[Fullterm newborns]] have enough iron stores for [[erythropoiesis]] until 20 weeks of life
*Infants have a shorter [[RBC]] lifespan and increased [[e
*Infants have a shorter [[RBC]] lifespan and increased [[erythropoietin]] [[metabolism]] when compared to adults<ref name="pmid8847295">{{cite journal| author=Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL, Lowe LS| title=Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. | journal=J Appl Physiol (1985) | year= 1996 | volume= 80 | issue= 1 | pages= 140-8 | pmid=8847295 | doi=10.1152/jappl.1996.80.1.140 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8847295  }} </ref>
rythropoietin]] [[metabolism]] when compared to adults<ref name="pmid8847295">{{cite journal| author=Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL, Lowe LS| title=Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. | journal=J Appl Physiol (1985) | year= 1996 | volume= 80 | issue= 1 | pages= 140-8 | pmid=8847295 | doi=10.1152/jappl.1996.80.1.140 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8847295  }} </ref>


===Pathological Anemia of Prematurity===
===Pathological Anemia of Prematurity===
In [[preterm]] [[infants]], multiple [[physiological factors]] exaggerate and combine to result in [[pathological anemia]]. [[Hemoglobin]] levels drop rapidly to less than 10 g/dl around 4-6 weeks after birth. [[Infants]] with 1-1.5 kg of [[birthweight]] have [[hemoglobin]] levels around 8 g/dl, whereas [[infants]] with [[birthweight]] less than 1 kg have [[hemoglobin]] levels around 7 g/dl or less. The profound decrease in [[hemoglobin]] levels in [[premature infants]] produce abnormal [[signs]] and [[symptoms]] and require a [[blood transfusion]]. <ref name="pmid20817366">{{cite journal| author=Strauss RG| title=Anaemia of prematurity: pathophysiology and treatment. | journal=Blood Rev | year= 2010 | volume= 24 | issue= 6 | pages= 221-5 | pmid=20817366 | doi=10.1016/j.blre.2010.08.001 | pmc=2981681 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20817366  }} </ref>
In [[preterm]] [[infants]], multiple [[physiological factors]] exaggerate and combine to result in [[pathological anemia]]. [[Hemoglobin]] levels drop rapidly to less than 10 g/dl around 4-6 weeks after birth. [[Infants]] with 1-1.5 kg of [[birthweight]] have [[hemoglobin]] levels around 8 g/dl, whereas [[infants]] with [[birthweight]] less than 1 kg have [[hemoglobin]] levels around 7 g/dl or less. The profound decrease in [[hemoglobin]] levels in [[premature infants]] produce abnormal [[signs]] and [[symptoms]] and require a [[blood transfusion]]. <ref name="pmid20817366">{{cite journal| author=Strauss RG| title=Anaemia of prematurity: pathophysiology and treatment. | journal=Blood Rev | year= 2010 | volume= 24 | issue= 6 | pages= 221-5 | pmid=20817366 | doi=10.1016/j.blre.2010.08.001 | pmc=2981681 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20817366  }} </ref>


*[[Iron transport]] from [[mother]] to [[infants]] and a greater proportion of [[fetal erythropoiesis]] occur during the [[third trimester]]. So, [[infants]] born [[prematurely]] have deficient [[iron stores]] required for the [[red blood cells production]]
*A greater proportion of [[fetal erythropoiesis]] and [[iron transport]] from [[mother]] to [[infants] occur during the [[third trimester]]. So, [[infants]] born [[prematurely]] have deficient [[iron stores]] required for the [[red blood cells production]]
*[[Blood loss]] during [[phlebotomy]] is the major contributor of [[anemia of prematurity]]
*[[Blood loss]] during [[phlebotomy]] is the major contributor of [[anemia of prematurity]]
*Majority of [[preterm infants]] are [[sick]] and [[critically ill]] that require frequent [[blood sampling]] for various [[laboratory investigations]] needed for their [[clinical monitoring]]. The average amount of [[blood loss]] during [[sampling]] ranges from 0.8-3.1 ml/kg/day, a significant amount that requires replacement
*Majority of [[preterm]] [[infants]] are [[sick]] and [[critically ill]] that require frequent [[blood sampling]] for various [[laboratory investigations]] needed for their [[clinical monitoring]]. The average amount of [[blood loss]] during [[sampling]] ranges from 0.8-3.1 ml/kg/day, a significant amount that requires replacement
*[[Preterm infants]] are at increased risk of [[nosocomial infections]] that lead to [[oxidative hemolysis]]
*[[Preterm]] [[infants]] are at increased risk of [[nosocomial infections]] that lead to [[oxidative hemolysis]]
*In [[premature infants]], [[liver]] is the major site of [[erythropoiesis]]. [[Liver]] [[EPO]] is less sensitive to anemia and tissue hypoxia<ref name="pmid9787158">{{cite journal| author=Dame C, Fahnenstich H, Freitag P, Hofmann D, Abdul-Nour T, Bartmann P | display-authors=etal| title=Erythropoietin mRNA expression in human fetal and neonatal tissue. | journal=Blood | year= 1998 | volume= 92 | issue= 9 | pages= 3218-25 | pmid=9787158 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9787158  }} </ref>
*In [[premature infants]], [[liver]] is the major site of [[erythropoiesis]]. [[Liver]] [[EPO]] is less sensitive to anemia and tissue hypoxia<ref name="pmid9787158">{{cite journal| author=Dame C, Fahnenstich H, Freitag P, Hofmann D, Abdul-Nour T, Bartmann P | display-authors=etal| title=Erythropoietin mRNA expression in human fetal and neonatal tissue. | journal=Blood | year= 1998 | volume= 92 | issue= 9 | pages= 3218-25 | pmid=9787158 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9787158  }} </ref>
*[[Preterm infants]] have deficient [[Vitamin E]], [[Vitamin B12]], [[Folic acid]] stores required for [[red blood cells]] production
*[[Preterm infants]] have deficient [[Vitamin E]], [[Vitamin B12]], [[Folic acid]] stores required for [[red blood cells]] production

Revision as of 10:37, 20 July 2020

Anemia of prematurity Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Anemia of prematurity from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Anemia of prematurity pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Anemia of prematurity pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Anemia of prematurity pathophysiology

on Anemia of prematurity pathophysiology

Anemia of prematurity pathophysiology in the news

Blogs on Anemia of prematurity pathophysiology

Directions to Hospitals Treating Anemia of prematurity

Risk calculators and risk factors for Anemia of prematurity pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Asra Firdous, M.B.B.S.[2]

Overview

Anemia of prematurity is multifactorial in origin. Phlebotomy is the major contributing factor. Other important factors are decreased erythropoietin production, increased erythropoietin metabolism, deficient iron stores, and decreased RBC lifespan.

Pathophysiology

The pathogenesis of anemia of prematurity is multifactorial. Anemia of prematurity is the result of a combination of decreased erythropoietin production, increased erythropoietin metabolism, deficient iron stores, decreased RBC lifespan, and blood loss during phlebotomy.[1][2]

Physiological anemia in newborns

Normally, all the newborns experience a fall in the haemoglobin concentration during the first few weeks of life. Healthy, full-term infants usually develop anemia around 10-12 weeks of life after birth. Hemoglobin concentration never falls below 10 g/dl in healthy infants. Physiological anemia is well tolerated and does not require any therapy.[2]

Pathological Anemia of Prematurity

In preterm infants, multiple physiological factors exaggerate and combine to result in pathological anemia. Hemoglobin levels drop rapidly to less than 10 g/dl around 4-6 weeks after birth. Infants with 1-1.5 kg of birthweight have hemoglobin levels around 8 g/dl, whereas infants with birthweight less than 1 kg have hemoglobin levels around 7 g/dl or less. The profound decrease in hemoglobin levels in premature infants produce abnormal signs and symptoms and require a blood transfusion. [2]

References

  1. Stockman JA, Graeber JE, Clark DA, McClellan K, Garcia JF, Kavey RE (1984). "Anemia of prematurity: determinants of the erythropoietin response". J Pediatr. 105 (5): 786–92. doi:10.1016/s0022-3476(84)80308-x. PMID 6502312.
  2. 2.0 2.1 2.2 Strauss RG (2010). "Anaemia of prematurity: pathophysiology and treatment". Blood Rev. 24 (6): 221–5. doi:10.1016/j.blre.2010.08.001. PMC 2981681. PMID 20817366.
  3. Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL, Lowe LS (1996). "Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects". J Appl Physiol (1985). 80 (1): 140–8. doi:10.1152/jappl.1996.80.1.140. PMID 8847295.
  4. Dame C, Fahnenstich H, Freitag P, Hofmann D, Abdul-Nour T, Bartmann P; et al. (1998). "Erythropoietin mRNA expression in human fetal and neonatal tissue". Blood. 92 (9): 3218–25. PMID 9787158.

Template:WH Template:WS