COVID-19 interventions: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
===Supplemental Oxygen=== | ===Supplemental Oxygen=== | ||
*A patient with L type (low lung elastance and [[Ventilation/perfusion ratio|V/Q ratio]]) of [[COVID-19-associated pneumonia]] or [[COVID-19-associated acute respiratory distress syndrome|CARDS]] benefit from increased [[FiO2]] the most. The therapy is particularly useful if the [[patient]] is non-[[dyspnea| | *A patient with L type (low lung elastance and [[Ventilation/perfusion ratio|V/Q ratio]]) of [[COVID-19-associated pneumonia]] or [[COVID-19-associated acute respiratory distress syndrome|CARDS]] benefit from increased [[FiO2]] the most. The therapy is particularly useful if the [[patient]] is non-[[dyspnea|dyspneic]].<ref name="pmid32291463">{{cite journal |vauthors=Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L |title=COVID-19 pneumonia: different respiratory treatments for different phenotypes? |journal=Intensive Care Med |volume=46 |issue=6 |pages=1099–1102 |date=June 2020 |pmid=32291463 |pmc=7154064 |doi=10.1007/s00134-020-06033-2 |url=}}</ref> | ||
*In [[COVID-19]] positive adult [[patients]] the Surviving Sepsis Campaign (SSC) strongly | *In [[COVID-19]] positive adult [[patients]] the Surviving Sepsis Campaign (SSC) strongly recommends (with moderate-quality evidence):<ref name="AlhazzaniMøller2020">{{cite journal|last1=Alhazzani|first1=Waleed|last2=Møller|first2=Morten Hylander|last3=Arabi|first3=Yaseen M.|last4=Loeb|first4=Mark|last5=Gong|first5=Michelle Ng|last6=Fan|first6=Eddy|last7=Oczkowski|first7=Simon|last8=Levy|first8=Mitchell M.|last9=Derde|first9=Lennie|last10=Dzierba|first10=Amy|last11=Du|first11=Bin|last12=Aboodi|first12=Michael|last13=Wunsch|first13=Hannah|last14=Cecconi|first14=Maurizio|last15=Koh|first15=Younsuck|last16=Chertow|first16=Daniel S.|last17=Maitland|first17=Kathryn|last18=Alshamsi|first18=Fayez|last19=Belley-Cote|first19=Emilie|last20=Greco|first20=Massimiliano|last21=Laundy|first21=Matthew|last22=Morgan|first22=Jill S.|last23=Kesecioglu|first23=Jozef|last24=McGeer|first24=Allison|last25=Mermel|first25=Leonard|last26=Mammen|first26=Manoj J.|last27=Alexander|first27=Paul E.|last28=Arrington|first28=Amy|last29=Centofanti|first29=John E.|last30=Citerio|first30=Giuseppe|last31=Baw|first31=Bandar|last32=Memish|first32=Ziad A.|last33=Hammond|first33=Naomi|last34=Hayden|first34=Frederick G.|last35=Evans|first35=Laura|last36=Rhodes|first36=Andrew|title=Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)|journal=Critical Care Medicine|volume=48|issue=6|year=2020|pages=e440–e469|issn=0090-3493|doi=10.1097/CCM.0000000000004363}}</ref> | ||
** To start the [[oxygen therapy|supplemental oxygen]] if the [[oxygen saturation|Spo2]] is < 90%. Starting the supplemental oxygen at < 92% saturation has weak recommendation. | ** To start the [[oxygen therapy|supplemental oxygen]] if the [[oxygen saturation|Spo2]] is < 90%. Starting the supplemental oxygen at < 92% saturation has weak recommendation. | ||
** Maintain [[oxygen saturation|Spo2]] no higher than 96% in [[patients]] with with acute [[respiratory failure|hypoxemic respiratory failure]] on [[oxygen therapy|supplemental oxygen therapy]]. The recommendation is based upon the systematic review and meta-analysis of 25 [[Randomized controlled trial|RCTs]] that showed a linear association between the death risk and higher [[oxygen saturation|Spo2]] targets. | ** Maintain [[oxygen saturation|Spo2]] no higher than 96% in [[patients]] with with acute [[respiratory failure|hypoxemic respiratory failure]] on [[oxygen therapy|supplemental oxygen therapy]]. The recommendation is based upon the systematic review and meta-analysis of 25 [[Randomized controlled trial|RCTs]] that showed a linear association between the death risk and higher [[oxygen saturation|Spo2]] targets. | ||
===Non-Invasive ventilation (NIV)=== | ===Non-Invasive ventilation (NIV)=== | ||
*NIV methods are easier and comfortable to use and work by inducing [[PEEP]] thus decreased the respiratory workload. Based on the [[COVID-19]] experience of the Chinese experts , both HFNC and [[Positive airway pressure|NIPPV]] methods should probably be utilized in patients with [[Hypoxemia laboratory findings|PaO2/FiO2]] > 150 mmHg.<ref name="pmid32506258">{{cite journal |vauthors=Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D |title=Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China |journal=Ann Intensive Care |volume=10 |issue=1 |pages=73 |date=June 2020 |pmid=32506258 |pmc=7275657 |doi=10.1186/s13613-020-00689-1 |url=}}</ref> | *NIV methods are easier and comfortable to use and work by inducing [[PEEP]] thus decreased the respiratory workload. Based on the [[COVID-19]] experience of the Chinese experts , both HFNC and [[Positive airway pressure|NIPPV]] methods should probably be utilized in patients with [[Hypoxemia laboratory findings|PaO2/FiO2]] > 150 mmHg.<ref name="pmid32506258">{{cite journal |vauthors=Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D |title=Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China |journal=Ann Intensive Care |volume=10 |issue=1 |pages=73 |date=June 2020 |pmid=32506258 |pmc=7275657 |doi=10.1186/s13613-020-00689-1 |url=}}</ref> | ||
*Close monitoring for a deteriorating respiratory status and early [[intubation]] when indicated in a controlled setting, can help minimize the [[infection]] of health personnel and promise better [[patient]] health outcomes.<ref name="AlhazzaniMøller2020">{{cite journal|last1=Alhazzani|first1=Waleed|last2=Møller|first2=Morten Hylander|last3=Arabi|first3=Yaseen M.|last4=Loeb|first4=Mark|last5=Gong|first5=Michelle Ng|last6=Fan|first6=Eddy|last7=Oczkowski|first7=Simon|last8=Levy|first8=Mitchell M.|last9=Derde|first9=Lennie|last10=Dzierba|first10=Amy|last11=Du|first11=Bin|last12=Aboodi|first12=Michael|last13=Wunsch|first13=Hannah|last14=Cecconi|first14=Maurizio|last15=Koh|first15=Younsuck|last16=Chertow|first16=Daniel S.|last17=Maitland|first17=Kathryn|last18=Alshamsi|first18=Fayez|last19=Belley-Cote|first19=Emilie|last20=Greco|first20=Massimiliano|last21=Laundy|first21=Matthew|last22=Morgan|first22=Jill S.|last23=Kesecioglu|first23=Jozef|last24=McGeer|first24=Allison|last25=Mermel|first25=Leonard|last26=Mammen|first26=Manoj J.|last27=Alexander|first27=Paul E.|last28=Arrington|first28=Amy|last29=Centofanti|first29=John E.|last30=Citerio|first30=Giuseppe|last31=Baw|first31=Bandar|last32=Memish|first32=Ziad A.|last33=Hammond|first33=Naomi|last34=Hayden|first34=Frederick G.|last35=Evans|first35=Laura|last36=Rhodes|first36=Andrew|title=Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)|journal=Critical Care Medicine|volume=48|issue=6|year=2020|pages=e440–e469|issn=0090-3493|doi=10.1097/CCM.0000000000004363}}</ref> | *Close monitoring for a deteriorating respiratory status and early [[intubation]] when indicated in a controlled setting, can help minimize the [[infection]] of health personnel and promise better [[patient]] health outcomes.<ref name="AlhazzaniMøller2020">{{cite journal|last1=Alhazzani|first1=Waleed|last2=Møller|first2=Morten Hylander|last3=Arabi|first3=Yaseen M.|last4=Loeb|first4=Mark|last5=Gong|first5=Michelle Ng|last6=Fan|first6=Eddy|last7=Oczkowski|first7=Simon|last8=Levy|first8=Mitchell M.|last9=Derde|first9=Lennie|last10=Dzierba|first10=Amy|last11=Du|first11=Bin|last12=Aboodi|first12=Michael|last13=Wunsch|first13=Hannah|last14=Cecconi|first14=Maurizio|last15=Koh|first15=Younsuck|last16=Chertow|first16=Daniel S.|last17=Maitland|first17=Kathryn|last18=Alshamsi|first18=Fayez|last19=Belley-Cote|first19=Emilie|last20=Greco|first20=Massimiliano|last21=Laundy|first21=Matthew|last22=Morgan|first22=Jill S.|last23=Kesecioglu|first23=Jozef|last24=McGeer|first24=Allison|last25=Mermel|first25=Leonard|last26=Mammen|first26=Manoj J.|last27=Alexander|first27=Paul E.|last28=Arrington|first28=Amy|last29=Centofanti|first29=John E.|last30=Citerio|first30=Giuseppe|last31=Baw|first31=Bandar|last32=Memish|first32=Ziad A.|last33=Hammond|first33=Naomi|last34=Hayden|first34=Frederick G.|last35=Evans|first35=Laura|last36=Rhodes|first36=Andrew|title=Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)|journal=Critical Care Medicine|volume=48|issue=6|year=2020|pages=e440–e469|issn=0090-3493|doi=10.1097/CCM.0000000000004363}}</ref> | ||
*Inspiratory pressures should be 10 cmH2O and expiratory pressures be 5 cmH2O with 1.0 [[FiO2]].<ref name="urlOxygenation and Ventilation of COVID 19 Patients | American Heart Association CPR & First Aid">{{cite web |url=https://cpr.heart.org/en/resources/coronavirus-covid19-resources-for-cpr-training/oxygenation-and-ventilation-of-covid-19-patients |title=Oxygenation and Ventilation of COVID 19 Patients | American Heart Association CPR & First Aid |format= |work= |accessdate=}}</ref> | *Inspiratory pressures should be 10 cmH2O and expiratory pressures be 5 cmH2O with 1.0 [[FiO2]].<ref name="urlOxygenation and Ventilation of COVID 19 Patients | American Heart Association CPR & First Aid">{{cite web |url=https://cpr.heart.org/en/resources/coronavirus-covid19-resources-for-cpr-training/oxygenation-and-ventilation-of-covid-19-patients |title=Oxygenation and Ventilation of COVID 19 Patients | American Heart Association CPR & First Aid |format= |work= |accessdate=}}</ref> | ||
Line 47: | Line 47: | ||
According to Americal Heart Association (AHA), [[intubation]] is indicated in: | According to Americal Heart Association (AHA), [[intubation]] is indicated in: | ||
*'''Gas exchange abnormality''': [[Respiratory failure]] (usually [[hypoxia|hypoxic]] in [[COVID-19]]), [[Hypoxemia laboratory findings|PaO2/FiO2]] <150 (corrected for altitude), NIV with [[FiO2]] >0.6 and inability to maintain SpO2 >90%, unresponsiveness to HFNC therapy, [[hypercapnia]] ([[PaCO2]] > 45 mm Hg) with [[acidosis]] (PH< 7.3), increased work of breathing with deteriorating respiratory function. | *'''Gas exchange abnormality''': [[Respiratory failure]] (usually [[hypoxia|hypoxic]] in [[COVID-19]]), [[Hypoxemia laboratory findings|PaO2/FiO2]] <150 (corrected for altitude), NIV with [[FiO2]] >0.6 and inability to maintain SpO2 >90%, unresponsiveness to HFNC therapy, [[hypercapnia]] ([[PaCO2]] > 45 mm Hg) with [[acidosis]] (PH< 7.3), increased work of breathing with deteriorating respiratory function. | ||
*'''Airway protection''': [[Alterened mental status]] and neurological | *'''Airway protection''': [[Alterened mental status|Altered mental status]] and neurological dysfunctions. | ||
*'''Pulmonary toilet''': To remove excessive pulmonary secretions. | *'''Pulmonary toilet''': To remove excessive pulmonary secretions. | ||
Line 54: | Line 54: | ||
*'''Mode''': No mode of ventilation has been suggested to be superior to others. [[American Heart Association|AHA]] recommends assist control PRVC. | *'''Mode''': No mode of ventilation has been suggested to be superior to others. [[American Heart Association|AHA]] recommends assist control PRVC. | ||
*'''[[Respiratory rate]]''': 20-25 breaths/min. | *'''[[Respiratory rate]]''': 20-25 breaths/min. | ||
*'''[[Lung volumes#Measurement and values|Tidal volume]] (Vt)''': 4–8 ml/kg predicted body weight and lower inspiratory pressures. Excess Vt causes alveolar | *'''[[Lung volumes#Measurement and values|Tidal volume]] (Vt)''': 4–8 ml/kg predicted body weight and lower inspiratory pressures. Excess Vt causes alveolar over-distension and worse [[COVID-19-associated acute respiratory distress syndrome|CARDS]]. | ||
* '''Plateau pressure''' (Pplat): <30 cm H2O and peak inspiratory pressure:<35 cmH2O. | * '''Plateau pressure''' (Pplat): <30 cm H2O and peak inspiratory pressure:<35 cmH2O. | ||
*'''[[FiO2]]''': <0.6 | *'''[[FiO2]]''': <0.6 | ||
*'''[[Positive end-expiratory pressure|Positive end-expiratory pressure (PEEP)]]''': Based upon the data of 8 [[RCT]]s on [[ARDS]], mean ± SD [[PEEP]] was 15.1 ± 3.6 cm H2O (higher) versus 9.1 ± 2.7 cm H2O (lower). Patients receiving higher [[PEEP]] had better oxygenation ([[PaO2/FiO2]]). It is recommended that moderate or severe [[COVID-19-associated acute respiratory distress syndrome|CARDS]] patients receive higher levels of [[PEEP]].<ref name="FanDel Sorbo2017">{{cite journal|last1=Fan|first1=Eddy|last2=Del Sorbo|first2=Lorenzo|last3=Goligher|first3=Ewan C.|last4=Hodgson|first4=Carol L.|last5=Munshi|first5=Laveena|last6=Walkey|first6=Allan J.|last7=Adhikari|first7=Neill K. J.|last8=Amato|first8=Marcelo B. P.|last9=Branson|first9=Richard|last10=Brower|first10=Roy G.|last11=Ferguson|first11=Niall D.|last12=Gajic|first12=Ognjen|last13=Gattinoni|first13=Luciano|last14=Hess|first14=Dean|last15=Mancebo|first15=Jordi|last16=Meade|first16=Maureen O.|last17=McAuley|first17=Daniel F.|last18=Pesenti|first18=Antonio|last19=Ranieri|first19=V. Marco|last20=Rubenfeld|first20=Gordon D.|last21=Rubin|first21=Eileen|last22=Seckel|first22=Maureen|last23=Slutsky|first23=Arthur S.|last24=Talmor|first24=Daniel|last25=Thompson|first25=B. Taylor|last26=Wunsch|first26=Hannah|last27=Uleryk|first27=Elizabeth|last28=Brozek|first28=Jan|last29=Brochard|first29=Laurent J.|title=An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome|journal=American Journal of Respiratory and Critical Care Medicine|volume=195|issue=9|year=2017|pages=1253–1263|issn=1073-449X|doi=10.1164/rccm.201703-0548ST}}</ref> | *'''[[Positive end-expiratory pressure|Positive end-expiratory pressure (PEEP)]]''': Based upon the data of 8 [[RCT]]s on [[ARDS]], mean ± SD [[PEEP]] was 15.1 ± 3.6 cm H2O (higher) versus 9.1 ± 2.7 cm H2O (lower). Patients receiving higher [[PEEP]] had better oxygenation ([[PaO2/FiO2]]). It is recommended that moderate or severe [[COVID-19-associated acute respiratory distress syndrome|CARDS]] patients receive higher levels of [[PEEP]].<ref name="FanDel Sorbo2017">{{cite journal|last1=Fan|first1=Eddy|last2=Del Sorbo|first2=Lorenzo|last3=Goligher|first3=Ewan C.|last4=Hodgson|first4=Carol L.|last5=Munshi|first5=Laveena|last6=Walkey|first6=Allan J.|last7=Adhikari|first7=Neill K. J.|last8=Amato|first8=Marcelo B. P.|last9=Branson|first9=Richard|last10=Brower|first10=Roy G.|last11=Ferguson|first11=Niall D.|last12=Gajic|first12=Ognjen|last13=Gattinoni|first13=Luciano|last14=Hess|first14=Dean|last15=Mancebo|first15=Jordi|last16=Meade|first16=Maureen O.|last17=McAuley|first17=Daniel F.|last18=Pesenti|first18=Antonio|last19=Ranieri|first19=V. Marco|last20=Rubenfeld|first20=Gordon D.|last21=Rubin|first21=Eileen|last22=Seckel|first22=Maureen|last23=Slutsky|first23=Arthur S.|last24=Talmor|first24=Daniel|last25=Thompson|first25=B. Taylor|last26=Wunsch|first26=Hannah|last27=Uleryk|first27=Elizabeth|last28=Brozek|first28=Jan|last29=Brochard|first29=Laurent J.|title=An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome|journal=American Journal of Respiratory and Critical Care Medicine|volume=195|issue=9|year=2017|pages=1253–1263|issn=1073-449X|doi=10.1164/rccm.201703-0548ST}}</ref> | ||
**''Titration for CARDS'': After lung recruitment maneuvers, [[PEEP]] can be titrated down from a maximum of 20 cm H2O until the goals of [[oxygenation]], plateau pressure, and [[compliance]] are all achieved. In Wuhan, [[COID-19]] patients with acute hypoxemic [[respiratory failure]] showed a poor tolerance to high [[PEEP]], possibly due to the severe lung damage by the [[SARS-CoV-2]] virus and [[inflammation|inflammatory]] reactions. The [[PEEP]] should be reduced to 8–10 cmH2O in [[Mechanical ventilation initial ventilator settings#Proning|prone positioning ventilation]]. <ref name="pmid32291463">{{cite journal |vauthors=Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L |title=COVID-19 pneumonia: different respiratory treatments for different phenotypes? |journal=Intensive Care Med |volume=46 |issue=6 |pages=1099–1102 |date=June 2020 |pmid=32291463 |pmc=7154064 |doi=10.1007/s00134-020-06033-2 |url=}}</ref><ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> The [[COVID-19-associated acute respiratory distress syndrome|CARDS]] Ventilator [[PEEP]] Titration Protocol can be viewed by [https://www.nebraskamed.com/sites/default/files/documents/covid-19/ards-ventilator-peep-titration-protocol.pdf?date=03242020 clicking here]. | **''Titration for CARDS'': After lung recruitment maneuvers, [[PEEP]] can be titrated down from a maximum of 20 cm H2O until the goals of [[oxygenation]], plateau pressure, and [[compliance]] are all achieved. In Wuhan, [[COID-19]] patients with acute hypoxemic [[respiratory failure]] showed a poor tolerance to high [[PEEP]], possibly due to the severe lung damage by the [[SARS-CoV-2]] virus and [[inflammation|inflammatory]] reactions. The [[PEEP]] should be reduced to 8–10 cmH2O in [[Mechanical ventilation initial ventilator settings#Proning|prone positioning ventilation]]. <ref name="pmid32291463">{{cite journal |vauthors=Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L |title=COVID-19 pneumonia: different respiratory treatments for different phenotypes? |journal=Intensive Care Med |volume=46 |issue=6 |pages=1099–1102 |date=June 2020 |pmid=32291463 |pmc=7154064 |doi=10.1007/s00134-020-06033-2 |url=}}</ref><ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> The [[COVID-19-associated acute respiratory distress syndrome|CARDS]] Ventilator [[PEEP]] Titration Protocol can be viewed by [https://www.nebraskamed.com/sites/default/files/documents/covid-19/ards-ventilator-peep-titration-protocol.pdf?date=03242020 clicking here]. | ||
** ''Types'': Patients with “H type” (high elastance and [[Ventilation/perfusion ratio|V/Q ratio]]) [[CARDS]], may benefit from higher [[PEEP]] and lower [[tidal volume]]s. Patients with “L type” (low lung elastance and [[Ventilation/perfusion ratio|V/Q ratio]]) CARDS may benefit from lower [[PEEP]] and higher [[tidal volumes]].<ref name="MariniGattinoni2020">{{cite journal|last1=Marini|first1=John J.|last2=Gattinoni|first2=Luciano|title=Management of COVID-19 Respiratory Distress|journal=JAMA|volume=323|issue=22|year=2020|pages=2329|issn=0098-7484|doi=10.1001/jama.2020.6825}}</ref> If Type L patient is [[hypercapnia|hypercapnic]], volumes greater than 6 ml/kg (up to 8–9 ml/kg) can be helpful. | **''Types'': Patients with “H type” (high elastance and [[Ventilation/perfusion ratio|V/Q ratio]]) [[CARDS]], may benefit from higher [[PEEP]] and lower [[tidal volume]]s. Patients with “L type” (low lung elastance and [[Ventilation/perfusion ratio|V/Q ratio]]) CARDS may benefit from lower [[PEEP]] and higher [[tidal volumes]].<ref name="MariniGattinoni2020">{{cite journal|last1=Marini|first1=John J.|last2=Gattinoni|first2=Luciano|title=Management of COVID-19 Respiratory Distress|journal=JAMA|volume=323|issue=22|year=2020|pages=2329|issn=0098-7484|doi=10.1001/jama.2020.6825}}</ref> If Type L patient is [[hypercapnia|hypercapnic]], volumes greater than 6 ml/kg (up to 8–9 ml/kg) can be helpful. | ||
**''Contraindications'' for the use of the [[PEEP]] may include untreated [[pneumothorax]], [[hypotension|very low blood pressure]], elevated [[intracranial pressures|ICP]], and [[pulmonary hypertension]]. | **''Contraindications'' for the use of the [[PEEP]] may include untreated [[pneumothorax]], [[hypotension|very low blood pressure]], elevated [[intracranial pressures|ICP]], and [[pulmonary hypertension]]. | ||
**''Complications'' of [[PEEP]] may include [[barotrauma]], such as [[pneumothorax]] and/or decreased [[cardiac output]]. [[COVID-19-associated acute respiratory distress syndrome|CARDS]] patients on high [[PEEP]] had no associated complications or increased mortality.<ref name="FanDel Sorbo2017">{{cite journal|last1=Fan|first1=Eddy|last2=Del Sorbo|first2=Lorenzo|last3=Goligher|first3=Ewan C.|last4=Hodgson|first4=Carol L.|last5=Munshi|first5=Laveena|last6=Walkey|first6=Allan J.|last7=Adhikari|first7=Neill K. J.|last8=Amato|first8=Marcelo B. P.|last9=Branson|first9=Richard|last10=Brower|first10=Roy G.|last11=Ferguson|first11=Niall D.|last12=Gajic|first12=Ognjen|last13=Gattinoni|first13=Luciano|last14=Hess|first14=Dean|last15=Mancebo|first15=Jordi|last16=Meade|first16=Maureen O.|last17=McAuley|first17=Daniel F.|last18=Pesenti|first18=Antonio|last19=Ranieri|first19=V. Marco|last20=Rubenfeld|first20=Gordon D.|last21=Rubin|first21=Eileen|last22=Seckel|first22=Maureen|last23=Slutsky|first23=Arthur S.|last24=Talmor|first24=Daniel|last25=Thompson|first25=B. Taylor|last26=Wunsch|first26=Hannah|last27=Uleryk|first27=Elizabeth|last28=Brozek|first28=Jan|last29=Brochard|first29=Laurent J.|title=An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome|journal=American Journal of Respiratory and Critical Care Medicine|volume=195|issue=9|year=2017|pages=1253–1263|issn=1073-449X|doi=10.1164/rccm.201703-0548ST}}</ref> | **''Complications'' of [[PEEP]] may include [[barotrauma]], such as [[pneumothorax]] and/or decreased [[cardiac output]]. [[COVID-19-associated acute respiratory distress syndrome|CARDS]] patients on high [[PEEP]] had no associated complications or increased mortality.<ref name="FanDel Sorbo2017">{{cite journal|last1=Fan|first1=Eddy|last2=Del Sorbo|first2=Lorenzo|last3=Goligher|first3=Ewan C.|last4=Hodgson|first4=Carol L.|last5=Munshi|first5=Laveena|last6=Walkey|first6=Allan J.|last7=Adhikari|first7=Neill K. J.|last8=Amato|first8=Marcelo B. P.|last9=Branson|first9=Richard|last10=Brower|first10=Roy G.|last11=Ferguson|first11=Niall D.|last12=Gajic|first12=Ognjen|last13=Gattinoni|first13=Luciano|last14=Hess|first14=Dean|last15=Mancebo|first15=Jordi|last16=Meade|first16=Maureen O.|last17=McAuley|first17=Daniel F.|last18=Pesenti|first18=Antonio|last19=Ranieri|first19=V. Marco|last20=Rubenfeld|first20=Gordon D.|last21=Rubin|first21=Eileen|last22=Seckel|first22=Maureen|last23=Slutsky|first23=Arthur S.|last24=Talmor|first24=Daniel|last25=Thompson|first25=B. Taylor|last26=Wunsch|first26=Hannah|last27=Uleryk|first27=Elizabeth|last28=Brozek|first28=Jan|last29=Brochard|first29=Laurent J.|title=An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome|journal=American Journal of Respiratory and Critical Care Medicine|volume=195|issue=9|year=2017|pages=1253–1263|issn=1073-449X|doi=10.1164/rccm.201703-0548ST}}</ref> | ||
Line 70: | Line 70: | ||
[[File:SSC COVID-19 hypoxia guidelines .jpeg|700px|thumb|center|Summary of SSC recommendations regarding initial management of hypoxic [[COVID-19]] patients.<ref name="AlhazzaniMøller2020">{{cite journal|last1=Alhazzani|first1=Waleed|last2=Møller|first2=Morten Hylander|last3=Arabi|first3=Yaseen M.|last4=Loeb|first4=Mark|last5=Gong|first5=Michelle Ng|last6=Fan|first6=Eddy|last7=Oczkowski|first7=Simon|last8=Levy|first8=Mitchell M.|last9=Derde|first9=Lennie|last10=Dzierba|first10=Amy|last11=Du|first11=Bin|last12=Aboodi|first12=Michael|last13=Wunsch|first13=Hannah|last14=Cecconi|first14=Maurizio|last15=Koh|first15=Younsuck|last16=Chertow|first16=Daniel S.|last17=Maitland|first17=Kathryn|last18=Alshamsi|first18=Fayez|last19=Belley-Cote|first19=Emilie|last20=Greco|first20=Massimiliano|last21=Laundy|first21=Matthew|last22=Morgan|first22=Jill S.|last23=Kesecioglu|first23=Jozef|last24=McGeer|first24=Allison|last25=Mermel|first25=Leonard|last26=Mammen|first26=Manoj J.|last27=Alexander|first27=Paul E.|last28=Arrington|first28=Amy|last29=Centofanti|first29=John E.|last30=Citerio|first30=Giuseppe|last31=Baw|first31=Bandar|last32=Memish|first32=Ziad A.|last33=Hammond|first33=Naomi|last34=Hayden|first34=Frederick G.|last35=Evans|first35=Laura|last36=Rhodes|first36=Andrew|title=Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)|journal=Critical Care Medicine|volume=48|issue=6|year=2020|pages=e440–e469|issn=0090-3493|doi=10.1097/CCM.0000000000004363}}</ref>]] | [[File:SSC COVID-19 hypoxia guidelines .jpeg|700px|thumb|center|Summary of SSC recommendations regarding initial management of hypoxic [[COVID-19]] patients.<ref name="AlhazzaniMøller2020">{{cite journal|last1=Alhazzani|first1=Waleed|last2=Møller|first2=Morten Hylander|last3=Arabi|first3=Yaseen M.|last4=Loeb|first4=Mark|last5=Gong|first5=Michelle Ng|last6=Fan|first6=Eddy|last7=Oczkowski|first7=Simon|last8=Levy|first8=Mitchell M.|last9=Derde|first9=Lennie|last10=Dzierba|first10=Amy|last11=Du|first11=Bin|last12=Aboodi|first12=Michael|last13=Wunsch|first13=Hannah|last14=Cecconi|first14=Maurizio|last15=Koh|first15=Younsuck|last16=Chertow|first16=Daniel S.|last17=Maitland|first17=Kathryn|last18=Alshamsi|first18=Fayez|last19=Belley-Cote|first19=Emilie|last20=Greco|first20=Massimiliano|last21=Laundy|first21=Matthew|last22=Morgan|first22=Jill S.|last23=Kesecioglu|first23=Jozef|last24=McGeer|first24=Allison|last25=Mermel|first25=Leonard|last26=Mammen|first26=Manoj J.|last27=Alexander|first27=Paul E.|last28=Arrington|first28=Amy|last29=Centofanti|first29=John E.|last30=Citerio|first30=Giuseppe|last31=Baw|first31=Bandar|last32=Memish|first32=Ziad A.|last33=Hammond|first33=Naomi|last34=Hayden|first34=Frederick G.|last35=Evans|first35=Laura|last36=Rhodes|first36=Andrew|title=Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)|journal=Critical Care Medicine|volume=48|issue=6|year=2020|pages=e440–e469|issn=0090-3493|doi=10.1097/CCM.0000000000004363}}</ref>]] | ||
== | ==Strategies to improve oxygenation== | ||
====[[Mechanical ventilation initial ventilator settings#Proning|Prone position ventilation]]==== | ====[[Mechanical ventilation initial ventilator settings#Proning|Prone position ventilation]]==== | ||
Line 76: | Line 76: | ||
*[[Prone position]] ventilation in [[ARDS]] patients with acute hypoxemic [[respiratory failure]] and spontaneous or assisted breathing reduces the [[mortality]] by 28 and 90-days.<ref name="pmid29576824">{{cite journal |vauthors=Xie H, Zhou ZG, Jin W, Yuan CB, Du J, Lu J, Wang RL |title=Ventilator management for acute respiratory distress syndrome associated with avian influenza A (H7N9) virus infection: A case series |journal=World J Emerg Med |volume=9 |issue=2 |pages=118–124 |date=2018 |pmid=29576824 |pmc=5847497 |doi=10.5847/wjem.j.1920-8642.2018.02.006 |url=}}</ref> | *[[Prone position]] ventilation in [[ARDS]] patients with acute hypoxemic [[respiratory failure]] and spontaneous or assisted breathing reduces the [[mortality]] by 28 and 90-days.<ref name="pmid29576824">{{cite journal |vauthors=Xie H, Zhou ZG, Jin W, Yuan CB, Du J, Lu J, Wang RL |title=Ventilator management for acute respiratory distress syndrome associated with avian influenza A (H7N9) virus infection: A case series |journal=World J Emerg Med |volume=9 |issue=2 |pages=118–124 |date=2018 |pmid=29576824 |pmc=5847497 |doi=10.5847/wjem.j.1920-8642.2018.02.006 |url=}}</ref> | ||
*The strategy was widely used in [[COVID-19]] patients in Wuhan, China.<ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> | *The strategy was widely used in [[COVID-19]] patients in Wuhan, China.<ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref> | ||
*[[Mechanical ventilation initial ventilator settings#Proning|Prone position]] is an early strategy rather than a desperate rescue therapy.<ref name="TeliasKatira2020">{{cite journal|last1=Telias|first1=Irene|last2=Katira|first2=Bhushan H.|last3=Brochard|first3=Laurent|title=Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?|journal=JAMA|volume=323|issue=22|year=2020|pages=2265|issn=0098-7484|doi=10.1001/jama.2020.8539}}</ref> A study by Lin Ding et al. suggests that the early application of prone ventilation with HFNC and NIV, especially in [[COVID-19]] patients with moderate [[ARDS]], can help avoid [[intubation]].<ref name="pmid32000806">{{cite journal |vauthors=Ding L, Wang L, Ma W, He H |title=Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study |journal=Crit Care |volume=24 |issue=1 |pages=28 |date=January 2020 |pmid=32000806 |pmc=6993481 |doi=10.1186/s13054-020-2738-5 |url=}}</ref> Prone position,with other adjunct therapies may probably be used for critically ill patients even during [[Extracorporeal membrane oxygenation|ECMO]].<ref name="pmid32506258">{{cite journal |vauthors=Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D |title=Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China |journal=Ann Intensive Care |volume=10 |issue=1 |pages=73 |date=June 2020 |pmid=32506258 |pmc=7275657 |doi=10.1186/s13613-020-00689-1 |url=}}</ref> | *[[Mechanical ventilation initial ventilator settings#Proning|Prone position]] is an early strategy rather than a desperate rescue therapy.<ref name="TeliasKatira2020">{{cite journal|last1=Telias|first1=Irene|last2=Katira|first2=Bhushan H.|last3=Brochard|first3=Laurent|title=Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?|journal=JAMA|volume=323|issue=22|year=2020|pages=2265|issn=0098-7484|doi=10.1001/jama.2020.8539}}</ref> A study by Lin Ding et al. suggests that the early application of prone ventilation with HFNC and NIV, especially in [[COVID-19]] patients with moderate [[ARDS]], can help avoid [[intubation]].<ref name="pmid32000806">{{cite journal |vauthors=Ding L, Wang L, Ma W, He H |title=Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study |journal=Crit Care |volume=24 |issue=1 |pages=28 |date=January 2020 |pmid=32000806 |pmc=6993481 |doi=10.1186/s13054-020-2738-5 |url=}}</ref> Prone position, with other adjunct therapies may probably be used for critically ill patients even during [[Extracorporeal membrane oxygenation|ECMO]].<ref name="pmid32506258">{{cite journal |vauthors=Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D |title=Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China |journal=Ann Intensive Care |volume=10 |issue=1 |pages=73 |date=June 2020 |pmid=32506258 |pmc=7275657 |doi=10.1186/s13613-020-00689-1 |url=}}</ref> | ||
* [[Mechanical ventilation initial ventilator settings#Proning|Prone position]] for awake patients during spontaneous or assisted breathing during [[Positive airway pressure|NIPPV]] or HFNC with mild-moderate [[ARDS]] was associated with an improved oxygenation.<ref name="SartiniTresoldi2020">{{cite journal|last1=Sartini|first1=Chiara|last2=Tresoldi|first2=Moreno|last3=Scarpellini|first3=Paolo|last4=Tettamanti|first4=Andrea|last5=Carcò|first5=Francesco|last6=Landoni|first6=Giovanni|last7=Zangrillo|first7=Alberto|title=Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit|journal=JAMA|volume=323|issue=22|year=2020|pages=2338|issn=0098-7484|doi=10.1001/jama.2020.7861}}</ref> In addition, patients with an Spo2 of 95% or greater after an hour of the [[Mechanical ventilation initial ventilator settings#Proning|prone position]] had a lower rate of [[intubation]].<ref name="ThompsonRanard2020">{{cite journal|last1=Thompson|first1=Alison E.|last2=Ranard|first2=Benjamin L.|last3=Wei|first3=Ying|last4=Jelic|first4=Sanja|title=Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure|journal=JAMA Internal Medicine|year=2020|issn=2168-6106|doi=10.1001/jamainternmed.2020.3030}}</ref> To answer the question about the effectiveness, two [[Randomized controlled trial|RCTs]] are in progress [https://clinicaltrials.gov/ct2/show/NCT04347941 NCT04347941] and [https://clinicaltrials.gov/ct2/show/NCT04350723 NCT04350723].<ref name="TeliasKatira2020">{{cite journal|last1=Telias|first1=Irene|last2=Katira|first2=Bhushan H.|last3=Brochard|first3=Laurent|title=Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?|journal=JAMA|volume=323|issue=22|year=2020|pages=2265|issn=0098-7484|doi=10.1001/jama.2020.8539}}</ref> | * [[Mechanical ventilation initial ventilator settings#Proning|Prone position]] for awake patients during spontaneous or assisted breathing during [[Positive airway pressure|NIPPV]] or HFNC with mild-moderate [[ARDS]] was associated with an improved oxygenation.<ref name="SartiniTresoldi2020">{{cite journal|last1=Sartini|first1=Chiara|last2=Tresoldi|first2=Moreno|last3=Scarpellini|first3=Paolo|last4=Tettamanti|first4=Andrea|last5=Carcò|first5=Francesco|last6=Landoni|first6=Giovanni|last7=Zangrillo|first7=Alberto|title=Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit|journal=JAMA|volume=323|issue=22|year=2020|pages=2338|issn=0098-7484|doi=10.1001/jama.2020.7861}}</ref> In addition, patients with an Spo2 of 95% or greater after an hour of the [[Mechanical ventilation initial ventilator settings#Proning|prone position]] had a lower rate of [[intubation]].<ref name="ThompsonRanard2020">{{cite journal|last1=Thompson|first1=Alison E.|last2=Ranard|first2=Benjamin L.|last3=Wei|first3=Ying|last4=Jelic|first4=Sanja|title=Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure|journal=JAMA Internal Medicine|year=2020|issn=2168-6106|doi=10.1001/jamainternmed.2020.3030}}</ref> To answer the question about the effectiveness, two [[Randomized controlled trial|RCTs]] are in progress [https://clinicaltrials.gov/ct2/show/NCT04347941 NCT04347941] and [https://clinicaltrials.gov/ct2/show/NCT04350723 NCT04350723].<ref name="TeliasKatira2020">{{cite journal|last1=Telias|first1=Irene|last2=Katira|first2=Bhushan H.|last3=Brochard|first3=Laurent|title=Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?|journal=JAMA|volume=323|issue=22|year=2020|pages=2265|issn=0098-7484|doi=10.1001/jama.2020.8539}}</ref> | ||
*The American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice and SSC guidelines strongly recommend (moderate evidence) [[Mechanical ventilation initial ventilator settings#Proning|Prone positioning]] for more than 12 hours/day in patients with severe [[ARDS]]. In [[mechanical ventilation|mechanically ventilated]] patients with [[PaO2/FiO2]] <150, [[Mechanical ventilation initial ventilator settings#Proning|prone positioning]] can be used.<ref name="pmid32645311">{{cite journal |vauthors=Fan E, Beitler JR, Brochard L, Calfee CS, Ferguson ND, Slutsky AS, Brodie D |title=COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? |journal=Lancet Respir Med |volume= |issue= |pages= |date=July 2020 |pmid=32645311 |pmc=7338016 |doi=10.1016/S2213-2600(20)30304-0 |url=}}</ref><ref name="FanDel Sorbo2017">{{cite journal|last1=Fan|first1=Eddy|last2=Del Sorbo|first2=Lorenzo|last3=Goligher|first3=Ewan C.|last4=Hodgson|first4=Carol L.|last5=Munshi|first5=Laveena|last6=Walkey|first6=Allan J.|last7=Adhikari|first7=Neill K. J.|last8=Amato|first8=Marcelo B. P.|last9=Branson|first9=Richard|last10=Brower|first10=Roy G.|last11=Ferguson|first11=Niall D.|last12=Gajic|first12=Ognjen|last13=Gattinoni|first13=Luciano|last14=Hess|first14=Dean|last15=Mancebo|first15=Jordi|last16=Meade|first16=Maureen O.|last17=McAuley|first17=Daniel F.|last18=Pesenti|first18=Antonio|last19=Ranieri|first19=V. Marco|last20=Rubenfeld|first20=Gordon D.|last21=Rubin|first21=Eileen|last22=Seckel|first22=Maureen|last23=Slutsky|first23=Arthur S.|last24=Talmor|first24=Daniel|last25=Thompson|first25=B. Taylor|last26=Wunsch|first26=Hannah|last27=Uleryk|first27=Elizabeth|last28=Brozek|first28=Jan|last29=Brochard|first29=Laurent J.|title=An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome|journal=American Journal of Respiratory and Critical Care Medicine|volume=195|issue=9|year=2017|pages=1253–1263|issn=1073-449X|doi=10.1164/rccm.201703-0548ST}}</ref><ref name="RhodesEvans2017">{{cite journal|last1=Rhodes|first1=Andrew|last2=Evans|first2=Laura E.|last3=Alhazzani|first3=Waleed|last4=Levy|first4=Mitchell M.|last5=Antonelli|first5=Massimo|last6=Ferrer|first6=Ricard|last7=Kumar|first7=Anand|last8=Sevransky|first8=Jonathan E.|last9=Sprung|first9=Charles L.|last10=Nunnally|first10=Mark E.|last11=Rochwerg|first11=Bram|last12=Rubenfeld|first12=Gordon D.|last13=Angus|first13=Derek C.|last14=Annane|first14=Djillali|last15=Beale|first15=Richard J.|last16=Bellinghan|first16=Geoffrey J.|last17=Bernard|first17=Gordon R.|last18=Chiche|first18=Jean-Daniel|last19=Coopersmith|first19=Craig|last20=De Backer|first20=Daniel P.|last21=French|first21=Craig J.|last22=Fujishima|first22=Seitaro|last23=Gerlach|first23=Herwig|last24=Hidalgo|first24=Jorge Luis|last25=Hollenberg|first25=Steven M.|last26=Jones|first26=Alan E.|last27=Karnad|first27=Dilip R.|last28=Kleinpell|first28=Ruth M.|last29=Koh|first29=Younsuk|last30=Lisboa|first30=Thiago Costa|last31=Machado|first31=Flavia R.|last32=Marini|first32=John J.|last33=Marshall|first33=John C.|last34=Mazuski|first34=John E.|last35=McIntyre|first35=Lauralyn A.|last36=McLean|first36=Anthony S.|last37=Mehta|first37=Sangeeta|last38=Moreno|first38=Rui P.|last39=Myburgh|first39=John|last40=Navalesi|first40=Paolo|last41=Nishida|first41=Osamu|last42=Osborn|first42=Tiffany M.|last43=Perner|first43=Anders|last44=Plunkett|first44=Colleen M.|last45=Ranieri|first45=Marco|last46=Schorr|first46=Christa A.|last47=Seckel|first47=Maureen A.|last48=Seymour|first48=Christopher W.|last49=Shieh|first49=Lisa|last50=Shukri|first50=Khalid A.|last51=Simpson|first51=Steven Q.|last52=Singer|first52=Mervyn|last53=Thompson|first53=B. Taylor|last54=Townsend|first54=Sean R.|last55=Van der Poll|first55=Thomas|last56=Vincent|first56=Jean-Louis|last57=Wiersinga|first57=W. Joost|last58=Zimmerman|first58=Janice L.|last59=Dellinger|first59=R. Phillip|title=Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016|journal=Intensive Care Medicine|volume=43|issue=3|year=2017|pages=304–377|issn=0342-4642|doi=10.1007/s00134-017-4683-6}}</ref> | *The American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice and SSC guidelines strongly recommend (moderate evidence) [[Mechanical ventilation initial ventilator settings#Proning|Prone positioning]] for more than 12 hours/day in patients with severe [[ARDS]]. In [[mechanical ventilation|mechanically ventilated]] patients with [[PaO2/FiO2]] <150, [[Mechanical ventilation initial ventilator settings#Proning|prone positioning]] can be used.<ref name="pmid32645311">{{cite journal |vauthors=Fan E, Beitler JR, Brochard L, Calfee CS, Ferguson ND, Slutsky AS, Brodie D |title=COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? |journal=Lancet Respir Med |volume= |issue= |pages= |date=July 2020 |pmid=32645311 |pmc=7338016 |doi=10.1016/S2213-2600(20)30304-0 |url=}}</ref><ref name="FanDel Sorbo2017">{{cite journal|last1=Fan|first1=Eddy|last2=Del Sorbo|first2=Lorenzo|last3=Goligher|first3=Ewan C.|last4=Hodgson|first4=Carol L.|last5=Munshi|first5=Laveena|last6=Walkey|first6=Allan J.|last7=Adhikari|first7=Neill K. J.|last8=Amato|first8=Marcelo B. P.|last9=Branson|first9=Richard|last10=Brower|first10=Roy G.|last11=Ferguson|first11=Niall D.|last12=Gajic|first12=Ognjen|last13=Gattinoni|first13=Luciano|last14=Hess|first14=Dean|last15=Mancebo|first15=Jordi|last16=Meade|first16=Maureen O.|last17=McAuley|first17=Daniel F.|last18=Pesenti|first18=Antonio|last19=Ranieri|first19=V. Marco|last20=Rubenfeld|first20=Gordon D.|last21=Rubin|first21=Eileen|last22=Seckel|first22=Maureen|last23=Slutsky|first23=Arthur S.|last24=Talmor|first24=Daniel|last25=Thompson|first25=B. Taylor|last26=Wunsch|first26=Hannah|last27=Uleryk|first27=Elizabeth|last28=Brozek|first28=Jan|last29=Brochard|first29=Laurent J.|title=An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome|journal=American Journal of Respiratory and Critical Care Medicine|volume=195|issue=9|year=2017|pages=1253–1263|issn=1073-449X|doi=10.1164/rccm.201703-0548ST}}</ref><ref name="RhodesEvans2017">{{cite journal|last1=Rhodes|first1=Andrew|last2=Evans|first2=Laura E.|last3=Alhazzani|first3=Waleed|last4=Levy|first4=Mitchell M.|last5=Antonelli|first5=Massimo|last6=Ferrer|first6=Ricard|last7=Kumar|first7=Anand|last8=Sevransky|first8=Jonathan E.|last9=Sprung|first9=Charles L.|last10=Nunnally|first10=Mark E.|last11=Rochwerg|first11=Bram|last12=Rubenfeld|first12=Gordon D.|last13=Angus|first13=Derek C.|last14=Annane|first14=Djillali|last15=Beale|first15=Richard J.|last16=Bellinghan|first16=Geoffrey J.|last17=Bernard|first17=Gordon R.|last18=Chiche|first18=Jean-Daniel|last19=Coopersmith|first19=Craig|last20=De Backer|first20=Daniel P.|last21=French|first21=Craig J.|last22=Fujishima|first22=Seitaro|last23=Gerlach|first23=Herwig|last24=Hidalgo|first24=Jorge Luis|last25=Hollenberg|first25=Steven M.|last26=Jones|first26=Alan E.|last27=Karnad|first27=Dilip R.|last28=Kleinpell|first28=Ruth M.|last29=Koh|first29=Younsuk|last30=Lisboa|first30=Thiago Costa|last31=Machado|first31=Flavia R.|last32=Marini|first32=John J.|last33=Marshall|first33=John C.|last34=Mazuski|first34=John E.|last35=McIntyre|first35=Lauralyn A.|last36=McLean|first36=Anthony S.|last37=Mehta|first37=Sangeeta|last38=Moreno|first38=Rui P.|last39=Myburgh|first39=John|last40=Navalesi|first40=Paolo|last41=Nishida|first41=Osamu|last42=Osborn|first42=Tiffany M.|last43=Perner|first43=Anders|last44=Plunkett|first44=Colleen M.|last45=Ranieri|first45=Marco|last46=Schorr|first46=Christa A.|last47=Seckel|first47=Maureen A.|last48=Seymour|first48=Christopher W.|last49=Shieh|first49=Lisa|last50=Shukri|first50=Khalid A.|last51=Simpson|first51=Steven Q.|last52=Singer|first52=Mervyn|last53=Thompson|first53=B. Taylor|last54=Townsend|first54=Sean R.|last55=Van der Poll|first55=Thomas|last56=Vincent|first56=Jean-Louis|last57=Wiersinga|first57=W. Joost|last58=Zimmerman|first58=Janice L.|last59=Dellinger|first59=R. Phillip|title=Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016|journal=Intensive Care Medicine|volume=43|issue=3|year=2017|pages=304–377|issn=0342-4642|doi=10.1007/s00134-017-4683-6}}</ref> | ||
{{#ev:youtube|https://www.youtube.com/watch?v=lcBPaHQUvXY}} | {{#ev:youtube|https://www.youtube.com/watch?v=lcBPaHQUvXY}} | ||
===Special | ===Special considerations=== | ||
*'''Lung recruitment maneuvers'''<ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref><ref name="CuiCao2020">{{cite journal|last1=Cui|first1=Yu|last2=Cao|first2=Rong|last3=Wang|first3=Yu|last4=Li|first4=Gen|title=Lung Recruitment Maneuvers for ARDS Patients: A Systematic Review and Meta-Analysis|journal=Respiration|volume=99|issue=3|year=2020|pages=264–276|issn=0025-7931|doi=10.1159/000501045}}</ref><ref name="pmid27855477">{{cite journal |vauthors=Hodgson C, Goligher EC, Young ME, Keating JL, Holland AE, Romero L, Bradley SJ, Tuxen D |title=Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation |journal=Cochrane Database Syst Rev |volume=11 |issue= |pages=CD006667 |date=November 2016 |pmid=27855477 |pmc=6464835 |doi=10.1002/14651858.CD006667.pub3 |url=}}</ref>: Lung recruitment maneuver is the application of very high (up to 40 cm H2O) [[positive airway pressure]] during mechanical [[ventilation]]. It opens the collapsed [[alveoli]], decreasing [[Ventilation-perfusion mismatch|ventilation/perfusion (V/Q) mismatching]] thus improving the gas exchange. For [[ARDS]] patients, the maneuvers may help improve oxygenation and decrease the length of hospital stay with no positive effect on reducing [[mortality]]. The decision varies on a case by case basis depending upon lung condition and [[patient]] hemodynamics. On the trouble side, the maneuver may generate aerosols. High-quality evidence is lacking to support the use in [[ARDS]] patients. | *'''Lung recruitment maneuvers'''<ref name="MengQiu2020">{{cite journal|last1=Meng|first1=Lingzhong|last2=Qiu|first2=Haibo|last3=Wan|first3=Li|last4=Ai|first4=Yuhang|last5=Xue|first5=Zhanggang|last6=Guo|first6=Qulian|last7=Deshpande|first7=Ranjit|last8=Zhang|first8=Lina|last9=Meng|first9=Jie|last10=Tong|first10=Chuanyao|last11=Liu|first11=Hong|last12=Xiong|first12=Lize|title=Intubation and Ventilation amid the COVID-19 Outbreak|journal=Anesthesiology|volume=132|issue=6|year=2020|pages=1317–1332|issn=0003-3022|doi=10.1097/ALN.0000000000003296}}</ref><ref name="CuiCao2020">{{cite journal|last1=Cui|first1=Yu|last2=Cao|first2=Rong|last3=Wang|first3=Yu|last4=Li|first4=Gen|title=Lung Recruitment Maneuvers for ARDS Patients: A Systematic Review and Meta-Analysis|journal=Respiration|volume=99|issue=3|year=2020|pages=264–276|issn=0025-7931|doi=10.1159/000501045}}</ref><ref name="pmid27855477">{{cite journal |vauthors=Hodgson C, Goligher EC, Young ME, Keating JL, Holland AE, Romero L, Bradley SJ, Tuxen D |title=Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation |journal=Cochrane Database Syst Rev |volume=11 |issue= |pages=CD006667 |date=November 2016 |pmid=27855477 |pmc=6464835 |doi=10.1002/14651858.CD006667.pub3 |url=}}</ref>: Lung recruitment maneuver is the application of very high (up to 40 cm H2O) [[positive airway pressure]] during mechanical [[ventilation]]. It opens the collapsed [[alveoli]], decreasing [[Ventilation-perfusion mismatch|ventilation/perfusion (V/Q) mismatching]] thus improving the gas exchange. For [[ARDS]] patients, the maneuvers may help improve oxygenation and decrease the length of hospital stay with no positive effect on reducing [[mortality]]. The decision varies on a case by case basis depending upon lung condition and [[patient]] hemodynamics. On the trouble side, the maneuver may generate aerosols. High-quality evidence is lacking to support the use in [[ARDS]] patients. | ||
*'''[[Paralytics]]''':<ref name="pmid32360979">{{cite journal |vauthors=Payen JF, Chanques G, Futier E, Velly L, Jaber S, Constantin JM |title=Sedation for critically ill patients with COVID-19: Which specificities? One size does not fit all |journal=Anaesth Crit Care Pain Med |volume=39 |issue=3 |pages=341–343 |date=June 2020 |pmid=32360979 |pmc=7189860 |doi=10.1016/j.accpm.2020.04.010 |url=}}</ref><ref name="urlCoronavirus (COVID-19) Update: Daily Roundup May 5, 2020 | FDA">{{cite web |url=https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-daily-roundup-may-5-2020 |title=Coronavirus (COVID-19) Update: Daily Roundup May 5, 2020 | FDA |format= |work= |accessdate=}}</ref> The [[paralytics]] may be used with [[analgesic]]s ([[fentanyl]], [[hydromorphone]]) and [[sedative]]s ([[benzodiazepines]], [[propofol]]). In [[COVID-19-associated acute respiratory distress syndrome|CARDS]] patients, Richmond Agitation Sedation Scale (RASS) score of (+2 to +4) even after optimal | *'''[[Paralytics]]''':<ref name="pmid32360979">{{cite journal |vauthors=Payen JF, Chanques G, Futier E, Velly L, Jaber S, Constantin JM |title=Sedation for critically ill patients with COVID-19: Which specificities? One size does not fit all |journal=Anaesth Crit Care Pain Med |volume=39 |issue=3 |pages=341–343 |date=June 2020 |pmid=32360979 |pmc=7189860 |doi=10.1016/j.accpm.2020.04.010 |url=}}</ref><ref name="urlCoronavirus (COVID-19) Update: Daily Roundup May 5, 2020 | FDA">{{cite web |url=https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-daily-roundup-may-5-2020 |title=Coronavirus (COVID-19) Update: Daily Roundup May 5, 2020 | FDA |format= |work= |accessdate=}}</ref> The [[paralytics]] may be used with [[analgesic]]s ([[fentanyl]], [[hydromorphone]]) and [[sedative]]s ([[benzodiazepines]], [[propofol]]). In [[COVID-19-associated acute respiratory distress syndrome|CARDS]] patients, Richmond Agitation Sedation Scale (RASS) score of (+2 to +4) even after optimal ventilatory settings may indicate the use of deep [[sedation]] with [[paralytics]]. If used, short-term (24– 48 hours) and intermittent muscle relaxation is recommended. Prone position ventilation may also require muscle relaxation along with sedation. [[Paralytics]] are not recommended in an unless [[Hypoxemia laboratory findings|PaO2/FiO2]] < 150 mmHg. The paralytics that are being used in [[COVID-19-associated acute respiratory distress syndrome|CARDS ]]patients include: [[Suxamethonium chloride|Succinylcholine chloride injection]] USP 200 mg/10 mL and [[Cisatracurium|cisatracurium besylate injection]] USP 20 mg/10 mL. | ||
*'''Aerosol Generation Risk Factors and Protective Measures''': Concerns have been raised for a possible risk for transmission of [[COVID-19]] to health care personnel due to aerosol transmission.<ref name="pmid32442035">{{cite journal |vauthors=Schünemann HJ, Khabsa J, Solo K, Khamis AM, Brignardello-Petersen R, El-Harakeh A, Darzi A, Hajizadeh A, Bognanni A, Bak A, Izcovich A, Cuello-Garcia CA, Chen C, Borowiack E, Chamseddine F, Schünemann F, Morgano GP, Muti-Schünemann GEU, Chen G, Zhao H, Neumann I, Brozek J, Schmidt J, Hneiny L, Harrison L, Reinap M, Junek M, Santesso N, El-Khoury R, Thomas R, Nieuwlaat R, Stalteri R, Yaacoub S, Lotfi T, Baldeh T, Piggott T, Zhang Y, Saad Z, Rochwerg B, Perri D, Fan E, Stehling F, Akl IB, Loeb M, Garner P, Aston S, Alhazzani W, Szczeklik W, Chu DK, Akl EA |title=Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence |journal=Ann. Intern. Med. |volume= |issue= |pages= |date=May 2020 |pmid=32442035 |pmc=7281716 |doi=10.7326/M20-2306 |url=}}</ref> With the judicious use of the standard precautions and protective measures, the results for the mentioned interventions have been promising. | *'''Aerosol Generation Risk Factors and Protective Measures''': Concerns have been raised for a possible risk for transmission of [[COVID-19]] to health care personnel due to aerosol transmission.<ref name="pmid32442035">{{cite journal |vauthors=Schünemann HJ, Khabsa J, Solo K, Khamis AM, Brignardello-Petersen R, El-Harakeh A, Darzi A, Hajizadeh A, Bognanni A, Bak A, Izcovich A, Cuello-Garcia CA, Chen C, Borowiack E, Chamseddine F, Schünemann F, Morgano GP, Muti-Schünemann GEU, Chen G, Zhao H, Neumann I, Brozek J, Schmidt J, Hneiny L, Harrison L, Reinap M, Junek M, Santesso N, El-Khoury R, Thomas R, Nieuwlaat R, Stalteri R, Yaacoub S, Lotfi T, Baldeh T, Piggott T, Zhang Y, Saad Z, Rochwerg B, Perri D, Fan E, Stehling F, Akl IB, Loeb M, Garner P, Aston S, Alhazzani W, Szczeklik W, Chu DK, Akl EA |title=Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence |journal=Ann. Intern. Med. |volume= |issue= |pages= |date=May 2020 |pmid=32442035 |pmc=7281716 |doi=10.7326/M20-2306 |url=}}</ref> With the judicious use of the standard precautions and protective measures, the results for the mentioned interventions have been promising. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Line 134: | Line 134: | ||
==Bronchoscopy== | ==Bronchoscopy== | ||
*Very limited studies are available on the use of [[bronchoscopy]] in [[COVID-19]] patients due to a very high risk of aerosol transmission. [[Bronchopy]] as a well-tolerated therapeutic intervention, performed in [[mechanical ventilation|mechanically ventilated]] patients with [[COVID-19]] have been reported in an observational study. [[FiO2]] was increased to [[Oxygen saturation|SpO2]] | *Very limited studies are available on the use of [[bronchoscopy]] in [[COVID-19]] patients due to a very high risk of aerosol transmission. [[Bronchopy|Bronchoscopy]] as a well-tolerated therapeutic intervention, performed in [[mechanical ventilation|mechanically ventilated]] patients with [[COVID-19]] have been reported in an observational study. [[FiO2]] was increased to [[Oxygen saturation|SpO2]] 95%–98% before the intervention. Precautions such as the use of a negative-pressure room, [[PPE]], and duration of the procedure never more than 10 minutes were observed. The study showed that [[patients]] can benefit from therapeutic [[bronchoscopy]] for the removal of thick hyper-secretions in the airway (most common complication observed). Guided mini-[[Bronchoalveolar lavage|BAL]] can also help confirm the clinical suspicion of [[superinfection]]. <ref name="pmid32412787">{{cite journal |vauthors=Torrego A, Pajares V, Fernández-Arias C, Vera P, Mancebo J |title=Bronchoscopy in Patients with COVID-19 with Invasive Mechanical Ventilation: A Single-Center Experience |journal=Am. J. Respir. Crit. Care Med. |volume=202 |issue=2 |pages=284–287 |date=July 2020 |pmid=32412787 |pmc=7365381 |doi=10.1164/rccm.202004-0945LE |url=}}</ref> | ||
*In addition to the above-mentioned precautions (table) recommended by [[CDC]] and [[WHO]] for the use of [[PPE]], eye protection and AIIR room for the procedure, using disposable [[bronchoscope]] if possible is also advised. It is important to clean the suction channels with the cleaning solutions used for highly [[infectious]] materials.<ref name="urlInfection Control: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | CDC">{{cite web |url=https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html |title=Infection Control: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | CDC |format= |work= |accessdate=}}</ref> | *In addition to the above-mentioned precautions (table) recommended by [[CDC]] and [[WHO]] for the use of [[PPE]], eye protection and AIIR room for the procedure, using disposable [[bronchoscope]] if possible is also advised. It is important to clean the suction channels with the cleaning solutions used for highly [[infectious]] materials.<ref name="urlInfection Control: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | CDC">{{cite web |url=https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html |title=Infection Control: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | CDC |format= |work= |accessdate=}}</ref> | ||
Revision as of 10:53, 26 July 2020
For COVID-19 frequently asked outpatient questions, click here
For COVID-19 frequently asked inpatient questions, click here
COVID-19 Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
COVID-19 interventions On the Web |
American Roentgen Ray Society Images of COVID-19 interventions |
Risk calculators and risk factors for COVID-19 interventions |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Javaria Anwer M.D.[2]
Synonyms and keywords: SARS Cov2 interventions, Interventions in covid19, Novel coronavirus interventions
Overview
The feasibility of the strategy used for the management of a patient with COVID-19 depends on the patient's condition at the time of presentation. Continuous evaluation and titration of ongoing interventions ensure optimal results. The respiratory manifestations of COVID-19 may require some oxygen supplementation to ventilatory support. Autopsy findings of patients with COVID-19-associated acute respiratory distress syndrome (CARDS) demonstrated small airway occlusion due to necrosis and inflammation. The finding advocates the use of positive pressure ventilation to restore the collapsed airways. A balanced approach is required as a high end-inspiratory pressure increases the risk of lung alveolar injury. Interventions posing a risk of aerosol transmissions should be carried out after using all the required precautions such as the use of PPE and AIIR room with minimal healthcare personnel in the room.
Ventilatory support in COVID-19
- The feasibility of the strategy used for the management of a patient with COVID-19 depends on the patient's condition at the time of presentation. Continuous evaluation and titration of ongoing interventions ensure optimal results. The respiratory manifestations of COVID-19 may require some oxygen supplementation to ventilatory support. Autopsy findings of patients with COVID-19-associated acute respiratory distress syndrome (CARDS) demonstrated small airway occlusion due to necrosis and inflammation. The finding advocates the use of positive pressure ventilation to restore the collapsed airways. A balanced approach is required as a high end-inspiratory pressure increases the risk of lung alveolar injury.[1]
- The COVID-19 respiratory complications that may require mechanical ventilation include: COVID-19-associated pneumonia, COVID-19-associated acute respiratory distress syndrome (CARDS) and COVID-19-associated respiratory failure. At the start, the recommendation to treat CARDS was similar to the ones used to treat ARDS due to other causes. During the initial course of the disease, in the absence of bacterial infection in COVID-19-associated pneumonia or CARDS, the patient has normal or even high pulmonary compliance. Thus, a patient can have severe hypoxemia in the absence of tachypnoea or dyspnea. Knowledge and experience of the unique features of the disease have led the guidelines to be modified/ specified.
- Acute hypoxemic respiratory failure and ARDS are more common respiratory complications in COVID-19 patients.[2]
Supplemental Oxygen
- A patient with L type (low lung elastance and V/Q ratio) of COVID-19-associated pneumonia or CARDS benefit from increased FiO2 the most. The therapy is particularly useful if the patient is non-dyspneic.[3]
- In COVID-19 positive adult patients the Surviving Sepsis Campaign (SSC) strongly recommends (with moderate-quality evidence):[2]
- To start the supplemental oxygen if the Spo2 is < 90%. Starting the supplemental oxygen at < 92% saturation has weak recommendation.
- Maintain Spo2 no higher than 96% in patients with with acute hypoxemic respiratory failure on supplemental oxygen therapy. The recommendation is based upon the systematic review and meta-analysis of 25 RCTs that showed a linear association between the death risk and higher Spo2 targets.
Non-Invasive ventilation (NIV)
- NIV methods are easier and comfortable to use and work by inducing PEEP thus decreased the respiratory workload. Based on the COVID-19 experience of the Chinese experts , both HFNC and NIPPV methods should probably be utilized in patients with PaO2/FiO2 > 150 mmHg.[1]
- Close monitoring for a deteriorating respiratory status and early intubation when indicated in a controlled setting, can help minimize the infection of health personnel and promise better patient health outcomes.[2]
- Inspiratory pressures should be 10 cmH2O and expiratory pressures be 5 cmH2O with 1.0 FiO2.[4]
High Flow Nasal Cannula (HFNC)
- Also known as high flow nasal oxygen (HFNO) or Heated humidified high-flow (HHHF) therapy is a non-invasive technique. It is a technique of delivering heated and humidified high-flow oxygen via soft and flexible nasal prongs. Humidification prevents the drying of epithelium and facilitates the removal of mucosal secretions. Other advantages include pharyngeal dead space washout and PEEP effect.[5] A hypercapnic patient should not be administered HFNC.
- Sufficient evidence to prove the superiority of one of the methods (HFNC or NIPPV) is lacking. But HFNC is preferred over Non-invasive positive pressure ventilation (NIPPV). It is possibly due to reduced mortality and decreased intubation risk, as proved by a RCT and a meta-analysis respectively. Patient comfort better oxygenation with HFNC than NIPPV is also one of the considering factors.[1][6]
- In acute hypoxemic respiratory failure despite supplemental oxygen therapy, SSC suggests using HFNC over conventional oxygen therapy (weak recommendation). A systematic review and meta-analysis of 9 RCTs showed that High Flow Nasal Cannula (HFNC) reduces the need for intubation.[2]
- Target SpO2 should be 88% -94% with minimal flow rates under 30L/min. Low flow rates help minimize aerosolization. PEEP ranges from 5-15 and peak airway pressure ranges from 8-10 cmH2O.[4]
Non-Invasive Positive Pressure Ventilation (NIPPV)
- Non-invasive positive pressure ventilation (NIPPV) is a technique utilized for delivering mechanical ventilation without the use of endotracheal intubation or tracheostomy. It can be administered through a face mask, nasal mask, or a helmet and includes CPAP and BiPAP.
- Many patients who develop ARDS receive a trial of non-invasive positive pressure ventilation (NIPPV) before intubation for mechanical ventilation before they clinically deteriorate or become unable to maintain adequate oxygenation. Studies from China reported (4% to 13%) of COVID-19 patients to have received NIPPV.[2]
- In adults with COVID-19 and hypoxemic respiratory failure, if HFNC is not available and endotracheal intubation not urgently indicated, a trial of NIPPV can be given. Type L patients with dyspnea can benefit from NIV.[3] Close monitoring and short-interval assessment for worsening of respiratory failure is required. (weak recommendation by SSC).[2]
- The safety and efficacy of helmet NIPPV in COVID-19 patients is questionable. One study advocates the use of helmet NIPPV in COVID-19 care due to potential avoidance of air dispersion through the spring-valve.[7] Having said that, the cost of a helmet may be an essential consideration for healthcare systems struggling financially.
Invasive Mechanical Ventilation (IMV)
- The vascular endothelial injury in COVID-19-associated acute respiratory distress syndrome (CARDS) and diverse mortality rates across the world in CARDS patients arbitrates the importance of different mechanical ventilation strategies.
- The Chinese CDC reports the case-fatality rate to be higher than 50% in patients who received invasive mechanical ventilation.[8]
- According to the American Society of Anesthesiology based upon the experience of Chinese anesthesiologists, timely (neither premature nor late) intubation and ventilation most effectual breathing assistance.[9] Early intubation may prevent the transition from type L (low elastance and V/Q ratio) to (high elastance and V/Q ratio) phenotype of CARDS.[3]
Intubation
According to Americal Heart Association (AHA), intubation is indicated in:
- Gas exchange abnormality: Respiratory failure (usually hypoxic in COVID-19), PaO2/FiO2 <150 (corrected for altitude), NIV with FiO2 >0.6 and inability to maintain SpO2 >90%, unresponsiveness to HFNC therapy, hypercapnia (PaCO2 > 45 mm Hg) with acidosis (PH< 7.3), increased work of breathing with deteriorating respiratory function.
- Airway protection: Altered mental status and neurological dysfunctions.
- Pulmonary toilet: To remove excessive pulmonary secretions.
Ventilator settings
The following ventilator setting should be used:[10][11][12]
- Mode: No mode of ventilation has been suggested to be superior to others. AHA recommends assist control PRVC.
- Respiratory rate: 20-25 breaths/min.
- Tidal volume (Vt): 4–8 ml/kg predicted body weight and lower inspiratory pressures. Excess Vt causes alveolar over-distension and worse CARDS.
- Plateau pressure (Pplat): <30 cm H2O and peak inspiratory pressure:<35 cmH2O.
- FiO2: <0.6
- Positive end-expiratory pressure (PEEP): Based upon the data of 8 RCTs on ARDS, mean ± SD PEEP was 15.1 ± 3.6 cm H2O (higher) versus 9.1 ± 2.7 cm H2O (lower). Patients receiving higher PEEP had better oxygenation (PaO2/FiO2). It is recommended that moderate or severe CARDS patients receive higher levels of PEEP.[12]
- Titration for CARDS: After lung recruitment maneuvers, PEEP can be titrated down from a maximum of 20 cm H2O until the goals of oxygenation, plateau pressure, and compliance are all achieved. In Wuhan, COID-19 patients with acute hypoxemic respiratory failure showed a poor tolerance to high PEEP, possibly due to the severe lung damage by the SARS-CoV-2 virus and inflammatory reactions. The PEEP should be reduced to 8–10 cmH2O in prone positioning ventilation. [3][10] The CARDS Ventilator PEEP Titration Protocol can be viewed by clicking here.
- Types: Patients with “H type” (high elastance and V/Q ratio) CARDS, may benefit from higher PEEP and lower tidal volumes. Patients with “L type” (low lung elastance and V/Q ratio) CARDS may benefit from lower PEEP and higher tidal volumes.[13] If Type L patient is hypercapnic, volumes greater than 6 ml/kg (up to 8–9 ml/kg) can be helpful.
- Contraindications for the use of the PEEP may include untreated pneumothorax, very low blood pressure, elevated ICP, and pulmonary hypertension.
- Complications of PEEP may include barotrauma, such as pneumothorax and/or decreased cardiac output. CARDS patients on high PEEP had no associated complications or increased mortality.[12]
- Maintenance Goals: pH= 7.25-7.42, paO2 >60/ SpO2= 88-96%, paCO2= 40-65/ETCO= 35-60 mmHg (permissive hypercapnia).
Extracorporeal membrane oxygenation (ECMO)
- Venovenous type of ECMO (VV ECMO) drains blood from a large central vein, oxygenates it, and removes carbon dioxide via the gas-exchange device. The blood is then reinfused. ECMO can help avoid ventilator-induced lung injury.
- The use of ECMO is has been recommended in COVID-19 patients with refractory hypoxemia or high driving pressure, or hypercapnia/respiratory acidosis despite invasive mechanical ventilation (IMV) and lung-protective measures such as higher PEEP or prone positioning. The strategies can be combined such as in Type H patients, who should be treated as severe ARDS patients with higher PEEP, if compatible with hemodynamics, prone positioning and ECMO.[3][14][1] The WHO suggested referring patients with refractory hypoxemia despite lung-protective ventilation to the settings with expertise in ECMO.[15]
- It is not known whether ECMO reduces mortality but 6.2% patients were treated with ECMO in Wuhan, China.[16][17] A definitive recommendation requires additional evidence for or against the use of ECMO in patients with CARDS.[12]
Strategies to improve oxygenation
Prone position ventilation
- Prone positioning is thought to improve oxygenation by improving ventilation/perfusion (V/Q) mismatching via reduced shunting of blood through under-ventilated lung tissue.
- Prone position ventilation in ARDS patients with acute hypoxemic respiratory failure and spontaneous or assisted breathing reduces the mortality by 28 and 90-days.[18]
- The strategy was widely used in COVID-19 patients in Wuhan, China.[10]
- Prone position is an early strategy rather than a desperate rescue therapy.[19] A study by Lin Ding et al. suggests that the early application of prone ventilation with HFNC and NIV, especially in COVID-19 patients with moderate ARDS, can help avoid intubation.[20] Prone position, with other adjunct therapies may probably be used for critically ill patients even during ECMO.[1]
- Prone position for awake patients during spontaneous or assisted breathing during NIPPV or HFNC with mild-moderate ARDS was associated with an improved oxygenation.[21] In addition, patients with an Spo2 of 95% or greater after an hour of the prone position had a lower rate of intubation.[22] To answer the question about the effectiveness, two RCTs are in progress NCT04347941 and NCT04350723.[19]
- The American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice and SSC guidelines strongly recommend (moderate evidence) Prone positioning for more than 12 hours/day in patients with severe ARDS. In mechanically ventilated patients with PaO2/FiO2 <150, prone positioning can be used.[14][12][23]
{{#ev:youtube|https://www.youtube.com/watch?v=lcBPaHQUvXY}}
Special considerations
- Lung recruitment maneuvers[10][24][25]: Lung recruitment maneuver is the application of very high (up to 40 cm H2O) positive airway pressure during mechanical ventilation. It opens the collapsed alveoli, decreasing ventilation/perfusion (V/Q) mismatching thus improving the gas exchange. For ARDS patients, the maneuvers may help improve oxygenation and decrease the length of hospital stay with no positive effect on reducing mortality. The decision varies on a case by case basis depending upon lung condition and patient hemodynamics. On the trouble side, the maneuver may generate aerosols. High-quality evidence is lacking to support the use in ARDS patients.
- Paralytics:[26][27] The paralytics may be used with analgesics (fentanyl, hydromorphone) and sedatives (benzodiazepines, propofol). In CARDS patients, Richmond Agitation Sedation Scale (RASS) score of (+2 to +4) even after optimal ventilatory settings may indicate the use of deep sedation with paralytics. If used, short-term (24– 48 hours) and intermittent muscle relaxation is recommended. Prone position ventilation may also require muscle relaxation along with sedation. Paralytics are not recommended in an unless PaO2/FiO2 < 150 mmHg. The paralytics that are being used in CARDS patients include: Succinylcholine chloride injection USP 200 mg/10 mL and cisatracurium besylate injection USP 20 mg/10 mL.
- Aerosol Generation Risk Factors and Protective Measures: Concerns have been raised for a possible risk for transmission of COVID-19 to health care personnel due to aerosol transmission.[28] With the judicious use of the standard precautions and protective measures, the results for the mentioned interventions have been promising.
Source of aerosol generation | Protective Measures |
---|---|
Coughing |
|
Face Mask Seal Leak |
|
Non-Invasive ventilation, bronchoscopy, CPR extubation, and manual ventilation |
|
Intubation |
|
Tracheostomy |
|
Bronchoscopy
- Very limited studies are available on the use of bronchoscopy in COVID-19 patients due to a very high risk of aerosol transmission. Bronchoscopy as a well-tolerated therapeutic intervention, performed in mechanically ventilated patients with COVID-19 have been reported in an observational study. FiO2 was increased to SpO2 95%–98% before the intervention. Precautions such as the use of a negative-pressure room, PPE, and duration of the procedure never more than 10 minutes were observed. The study showed that patients can benefit from therapeutic bronchoscopy for the removal of thick hyper-secretions in the airway (most common complication observed). Guided mini-BAL can also help confirm the clinical suspicion of superinfection. [34]
- In addition to the above-mentioned precautions (table) recommended by CDC and WHO for the use of PPE, eye protection and AIIR room for the procedure, using disposable bronchoscope if possible is also advised. It is important to clean the suction channels with the cleaning solutions used for highly infectious materials.[30]
Tracheostomy
- Standard decision making for tracheostomy in a COVID patient is practiced. But owing to the potential of aerosol spread of the infection certain considerations should be kept in mind, such as the safety of other the patient's family, other patients, healthcare personnel, and the resources available.[35]
- Tracheostomy should be delayed until at least the 10th day of mechanical ventilation. It should be considered only when the patient is clinically improving. The decision of extubation should be limited to the patients who have a high chance of success.[33]
Cardiopulmonary resuscitation (CPR)
American Heart Association's (AHA) interim BLS Healthcare Provider Adult Cardiac Arrest Algorithm for Suspected or Confirmed COVID-19 Patients can be accessed by clicking here.[36]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D (June 2020). "Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China". Ann Intensive Care. 10 (1): 73. doi:10.1186/s13613-020-00689-1. PMC 7275657 Check
|pmc=
value (help). PMID 32506258 Check|pmid=
value (help). - ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Alhazzani, Waleed; Møller, Morten Hylander; Arabi, Yaseen M.; Loeb, Mark; Gong, Michelle Ng; Fan, Eddy; Oczkowski, Simon; Levy, Mitchell M.; Derde, Lennie; Dzierba, Amy; Du, Bin; Aboodi, Michael; Wunsch, Hannah; Cecconi, Maurizio; Koh, Younsuck; Chertow, Daniel S.; Maitland, Kathryn; Alshamsi, Fayez; Belley-Cote, Emilie; Greco, Massimiliano; Laundy, Matthew; Morgan, Jill S.; Kesecioglu, Jozef; McGeer, Allison; Mermel, Leonard; Mammen, Manoj J.; Alexander, Paul E.; Arrington, Amy; Centofanti, John E.; Citerio, Giuseppe; Baw, Bandar; Memish, Ziad A.; Hammond, Naomi; Hayden, Frederick G.; Evans, Laura; Rhodes, Andrew (2020). "Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)". Critical Care Medicine. 48 (6): e440–e469. doi:10.1097/CCM.0000000000004363. ISSN 0090-3493.
- ↑ 3.0 3.1 3.2 3.3 3.4 Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L (June 2020). "COVID-19 pneumonia: different respiratory treatments for different phenotypes?". Intensive Care Med. 46 (6): 1099–1102. doi:10.1007/s00134-020-06033-2. PMC 7154064 Check
|pmc=
value (help). PMID 32291463 Check|pmid=
value (help). - ↑ 4.0 4.1 "Oxygenation and Ventilation of COVID 19 Patients | American Heart Association CPR & First Aid".
- ↑ Zhang J, Lin L, Pan K, Zhou J, Huang X (December 2016). "High-flow nasal cannula therapy for adult patients". J. Int. Med. Res. 44 (6): 1200–1211. doi:10.1177/0300060516664621. PMC 5536739. PMID 27698207.
- ↑ Frat, Jean-Pierre; Thille, Arnaud W.; Mercat, Alain; Girault, Christophe; Ragot, Stéphanie; Perbet, Sébastien; Prat, Gwénael; Boulain, Thierry; Morawiec, Elise; Cottereau, Alice; Devaquet, Jérôme; Nseir, Saad; Razazi, Keyvan; Mira, Jean-Paul; Argaud, Laurent; Chakarian, Jean-Charles; Ricard, Jean-Damien; Wittebole, Xavier; Chevalier, Stéphanie; Herbland, Alexandre; Fartoukh, Muriel; Constantin, Jean-Michel; Tonnelier, Jean-Marie; Pierrot, Marc; Mathonnet, Armelle; Béduneau, Gaëtan; Delétage-Métreau, Céline; Richard, Jean-Christophe M.; Brochard, Laurent; Robert, René (2015). "High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure". New England Journal of Medicine. 372 (23): 2185–2196. doi:10.1056/NEJMoa1503326. ISSN 0028-4793.
- ↑ Cabrini L, Landoni G, Zangrillo A (February 2020). "Minimise nosocomial spread of 2019-nCoV when treating acute respiratory failure". Lancet. 395 (10225): 685. doi:10.1016/S0140-6736(20)30359-7. PMC 7137083 Check
|pmc=
value (help). PMID 32059800 Check|pmid=
value (help). - ↑ Wu, Zunyou; McGoogan, Jennifer M. (2020). "Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China". JAMA. 323 (13): 1239. doi:10.1001/jama.2020.2648. ISSN 0098-7484.
- ↑ 10.0 10.1 10.2 10.3 10.4 Meng, Lingzhong; Qiu, Haibo; Wan, Li; Ai, Yuhang; Xue, Zhanggang; Guo, Qulian; Deshpande, Ranjit; Zhang, Lina; Meng, Jie; Tong, Chuanyao; Liu, Hong; Xiong, Lize (2020). "Intubation and Ventilation amid the COVID-19 Outbreak". Anesthesiology. 132 (6): 1317–1332. doi:10.1097/ALN.0000000000003296. ISSN 0003-3022.
- ↑ "NHLBI ARDS Network | Tools".
- ↑ 12.0 12.1 12.2 12.3 12.4 Fan, Eddy; Del Sorbo, Lorenzo; Goligher, Ewan C.; Hodgson, Carol L.; Munshi, Laveena; Walkey, Allan J.; Adhikari, Neill K. J.; Amato, Marcelo B. P.; Branson, Richard; Brower, Roy G.; Ferguson, Niall D.; Gajic, Ognjen; Gattinoni, Luciano; Hess, Dean; Mancebo, Jordi; Meade, Maureen O.; McAuley, Daniel F.; Pesenti, Antonio; Ranieri, V. Marco; Rubenfeld, Gordon D.; Rubin, Eileen; Seckel, Maureen; Slutsky, Arthur S.; Talmor, Daniel; Thompson, B. Taylor; Wunsch, Hannah; Uleryk, Elizabeth; Brozek, Jan; Brochard, Laurent J. (2017). "An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome". American Journal of Respiratory and Critical Care Medicine. 195 (9): 1253–1263. doi:10.1164/rccm.201703-0548ST. ISSN 1073-449X.
- ↑ Marini, John J.; Gattinoni, Luciano (2020). "Management of COVID-19 Respiratory Distress". JAMA. 323 (22): 2329. doi:10.1001/jama.2020.6825. ISSN 0098-7484.
- ↑ 14.0 14.1 Fan E, Beitler JR, Brochard L, Calfee CS, Ferguson ND, Slutsky AS, Brodie D (July 2020). "COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted?". Lancet Respir Med. doi:10.1016/S2213-2600(20)30304-0. PMC 7338016 Check
|pmc=
value (help). PMID 32645311 Check|pmid=
value (help). - ↑ "Clinical management of COVID-19".
- ↑ Zeng, Yingchun; Cai, Zhongxiang; Xianyu, Yunyan; Yang, Bing Xiang; Song, Ting; Yan, Qiaoyuan (2020). "Prognosis when using extracorporeal membrane oxygenation (ECMO) for critically ill COVID-19 patients in China: a retrospective case series". Critical Care. 24 (1). doi:10.1186/s13054-020-2840-8. ISSN 1364-8535.
- ↑ Li, Chenglong; Hou, Xiaotong; Tong, Zhaohui; Qiu, Haibo; Li, Yimin; Li, Ang (2020). "Extracorporeal membrane oxygenation programs for COVID-19 in China". Critical Care. 24 (1). doi:10.1186/s13054-020-03047-6. ISSN 1364-8535.
- ↑ Xie H, Zhou ZG, Jin W, Yuan CB, Du J, Lu J, Wang RL (2018). "Ventilator management for acute respiratory distress syndrome associated with avian influenza A (H7N9) virus infection: A case series". World J Emerg Med. 9 (2): 118–124. doi:10.5847/wjem.j.1920-8642.2018.02.006. PMC 5847497. PMID 29576824.
- ↑ 19.0 19.1 Telias, Irene; Katira, Bhushan H.; Brochard, Laurent (2020). "Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?". JAMA. 323 (22): 2265. doi:10.1001/jama.2020.8539. ISSN 0098-7484.
- ↑ Ding L, Wang L, Ma W, He H (January 2020). "Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study". Crit Care. 24 (1): 28. doi:10.1186/s13054-020-2738-5. PMC 6993481 Check
|pmc=
value (help). PMID 32000806 Check|pmid=
value (help). - ↑ Sartini, Chiara; Tresoldi, Moreno; Scarpellini, Paolo; Tettamanti, Andrea; Carcò, Francesco; Landoni, Giovanni; Zangrillo, Alberto (2020). "Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit". JAMA. 323 (22): 2338. doi:10.1001/jama.2020.7861. ISSN 0098-7484.
- ↑ Thompson, Alison E.; Ranard, Benjamin L.; Wei, Ying; Jelic, Sanja (2020). "Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure". JAMA Internal Medicine. doi:10.1001/jamainternmed.2020.3030. ISSN 2168-6106.
- ↑ Rhodes, Andrew; Evans, Laura E.; Alhazzani, Waleed; Levy, Mitchell M.; Antonelli, Massimo; Ferrer, Ricard; Kumar, Anand; Sevransky, Jonathan E.; Sprung, Charles L.; Nunnally, Mark E.; Rochwerg, Bram; Rubenfeld, Gordon D.; Angus, Derek C.; Annane, Djillali; Beale, Richard J.; Bellinghan, Geoffrey J.; Bernard, Gordon R.; Chiche, Jean-Daniel; Coopersmith, Craig; De Backer, Daniel P.; French, Craig J.; Fujishima, Seitaro; Gerlach, Herwig; Hidalgo, Jorge Luis; Hollenberg, Steven M.; Jones, Alan E.; Karnad, Dilip R.; Kleinpell, Ruth M.; Koh, Younsuk; Lisboa, Thiago Costa; Machado, Flavia R.; Marini, John J.; Marshall, John C.; Mazuski, John E.; McIntyre, Lauralyn A.; McLean, Anthony S.; Mehta, Sangeeta; Moreno, Rui P.; Myburgh, John; Navalesi, Paolo; Nishida, Osamu; Osborn, Tiffany M.; Perner, Anders; Plunkett, Colleen M.; Ranieri, Marco; Schorr, Christa A.; Seckel, Maureen A.; Seymour, Christopher W.; Shieh, Lisa; Shukri, Khalid A.; Simpson, Steven Q.; Singer, Mervyn; Thompson, B. Taylor; Townsend, Sean R.; Van der Poll, Thomas; Vincent, Jean-Louis; Wiersinga, W. Joost; Zimmerman, Janice L.; Dellinger, R. Phillip (2017). "Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016". Intensive Care Medicine. 43 (3): 304–377. doi:10.1007/s00134-017-4683-6. ISSN 0342-4642.
- ↑ Cui, Yu; Cao, Rong; Wang, Yu; Li, Gen (2020). "Lung Recruitment Maneuvers for ARDS Patients: A Systematic Review and Meta-Analysis". Respiration. 99 (3): 264–276. doi:10.1159/000501045. ISSN 0025-7931.
- ↑ Hodgson C, Goligher EC, Young ME, Keating JL, Holland AE, Romero L, Bradley SJ, Tuxen D (November 2016). "Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation". Cochrane Database Syst Rev. 11: CD006667. doi:10.1002/14651858.CD006667.pub3. PMC 6464835. PMID 27855477.
- ↑ Payen JF, Chanques G, Futier E, Velly L, Jaber S, Constantin JM (June 2020). "Sedation for critically ill patients with COVID-19: Which specificities? One size does not fit all". Anaesth Crit Care Pain Med. 39 (3): 341–343. doi:10.1016/j.accpm.2020.04.010. PMC 7189860 Check
|pmc=
value (help). PMID 32360979 Check|pmid=
value (help). - ↑ Schünemann HJ, Khabsa J, Solo K, Khamis AM, Brignardello-Petersen R, El-Harakeh A, Darzi A, Hajizadeh A, Bognanni A, Bak A, Izcovich A, Cuello-Garcia CA, Chen C, Borowiack E, Chamseddine F, Schünemann F, Morgano GP, Muti-Schünemann G, Chen G, Zhao H, Neumann I, Brozek J, Schmidt J, Hneiny L, Harrison L, Reinap M, Junek M, Santesso N, El-Khoury R, Thomas R, Nieuwlaat R, Stalteri R, Yaacoub S, Lotfi T, Baldeh T, Piggott T, Zhang Y, Saad Z, Rochwerg B, Perri D, Fan E, Stehling F, Akl IB, Loeb M, Garner P, Aston S, Alhazzani W, Szczeklik W, Chu DK, Akl EA (May 2020). "Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence". Ann. Intern. Med. doi:10.7326/M20-2306. PMC 7281716 Check
|pmc=
value (help). PMID 32442035 Check|pmid=
value (help). Vancouver style error: initials (help) - ↑ 29.0 29.1 29.2 "apps.who.int" (PDF).
- ↑ Hatipoglu Z, Turktan M, Avci A (November 2016). "The anesthesia of trachea and bronchus surgery". J Thorac Dis. 8 (11): 3442–3451. doi:10.21037/jtd.2016.11.35. PMC 5179431. PMID 28066625.
- ↑ "Transmission-Based Precautions | Basics | Infection Control | CDC"".
- ↑ 33.0 33.1 McGrath, Brendan A; Brenner, Michael J; Warrillow, Stephen J; Pandian, Vinciya; Arora, Asit; Cameron, Tanis S; Añon, José Manuel; Hernández Martínez, Gonzalo; Truog, Robert D; Block, Susan D; Lui, Grace C Y; McDonald, Christine; Rassekh, Christopher H; Atkins, Joshua; Qiang, Li; Vergez, Sébastien; Dulguerov, Pavel; Zenk, Johannes; Antonelli, Massimo; Pelosi, Paolo; Walsh, Brian K; Ward, Erin; Shang, You; Gasparini, Stefano; Donati, Abele; Singer, Mervyn; Openshaw, Peter J M; Tolley, Neil; Markel, Howard; Feller-Kopman, David J (2020). "Tracheostomy in the COVID-19 era: global and multidisciplinary guidance". The Lancet Respiratory Medicine. 8 (7): 717–725. doi:10.1016/S2213-2600(20)30230-7. ISSN 2213-2600.
- ↑ Torrego A, Pajares V, Fernández-Arias C, Vera P, Mancebo J (July 2020). "Bronchoscopy in Patients with COVID-19 with Invasive Mechanical Ventilation: A Single-Center Experience". Am. J. Respir. Crit. Care Med. 202 (2): 284–287. doi:10.1164/rccm.202004-0945LE. PMC 7365381 Check
|pmc=
value (help). PMID 32412787 Check|pmid=
value (help). - ↑ Zhang, Xiaomeng; Huang, Qiling; Niu, Xun; Zhou, Tao; Xie, Zhen; Zhong, Yi; Xiao, Hongjun (2020). "Safe and effective management of tracheostomy in
COVID
‐19 patients". Head & Neck. 42 (7): 1374–1381. doi:10.1002/hed.26261. ISSN 1043-3074. line feed character in
|title=
at position 49 (help)