Metabolic alkalosis pathophysiology: Difference between revisions
No edit summary |
|||
Line 8: | Line 8: | ||
==Pathophysiology== | ==Pathophysiology== | ||
=== | ===[[H+]] loss=== | ||
==== | ====Gastrointestinal loss==== | ||
**[[ | **[[Emesis] (most commonly seen in [[pyloric stenosis]]), [[Nasogastric tube|NG suction]] , [[Zollinger-Ellison syndrome|Zollinger-ellison]] syndrome, [[Bulimia nervosa|Bulimia]].<ref name="pmid1928424">{{cite journal |vauthors=Galla JH, Gifford JD, Luke RG, Rome L |title=Adaptations to chloride-depletion alkalosis |journal=Am J Physiol |volume=261 |issue=4 Pt 2 |pages=R771–81 |date=October 1991 |pmid=1928424 |doi=10.1152/ajpregu.1991.261.4.R771 |url=}}</ref> | ||
**[[Diuretic|Diuretics]]: [[Loop diuretic|Loop]] and [[thiazide diuretics]]. | **[[Diuretic|Diuretics]]: [[Loop diuretic|Loop]] and [[thiazide diuretics]]. | ||
**[[Diarrhea]]: [[Villous adenoma]]<ref name="pmid5927076">{{cite journal |vauthors=Babior BM |title=Villous adenoma of the colon. Study of a patient with severe fluid and electrolyte disturbances |journal=Am J Med |volume=41 |issue=4 |pages=615–21 |date=October 1966 |pmid=5927076 |doi=10.1016/0002-9343(66)90223-3 |url=}}</ref>, [[congenital chloride diarrhea]]<ref name="pmid8896562">{{cite journal |vauthors=Höglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J |title=Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea |journal=Nat Genet |volume=14 |issue=3 |pages=316–9 |date=November 1996 |pmid=8896562 |doi=10.1038/ng1196-316 |url=}}</ref> | **[[Diarrhea]]: [[Villous adenoma]]<ref name="pmid5927076">{{cite journal |vauthors=Babior BM |title=Villous adenoma of the colon. Study of a patient with severe fluid and electrolyte disturbances |journal=Am J Med |volume=41 |issue=4 |pages=615–21 |date=October 1966 |pmid=5927076 |doi=10.1016/0002-9343(66)90223-3 |url=}}</ref>, [[congenital chloride diarrhea]]<ref name="pmid8896562">{{cite journal |vauthors=Höglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J |title=Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea |journal=Nat Genet |volume=14 |issue=3 |pages=316–9 |date=November 1996 |pmid=8896562 |doi=10.1038/ng1196-316 |url=}}</ref> | ||
Line 24: | Line 24: | ||
**[[Bartter syndrome|Bartter]] and [[Gitelman syndrome]]. <ref name="pmid9767561">{{cite journal |vauthors=Kurtz I |title=Molecular pathogenesis of Bartter's and Gitelman's syndromes |journal=Kidney Int |volume=54 |issue=4 |pages=1396–410 |date=October 1998 |pmid=9767561 |doi=10.1046/j.1523-1755.1998.00124.x |url=}}</ref> | **[[Bartter syndrome|Bartter]] and [[Gitelman syndrome]]. <ref name="pmid9767561">{{cite journal |vauthors=Kurtz I |title=Molecular pathogenesis of Bartter's and Gitelman's syndromes |journal=Kidney Int |volume=54 |issue=4 |pages=1396–410 |date=October 1998 |pmid=9767561 |doi=10.1046/j.1523-1755.1998.00124.x |url=}}</ref> | ||
=== | ===Elevated HCO3- level in serum=== | ||
* | * Intake of [[NaCO3]], citrate, baking powder, lactate and acetate. | ||
===Transport of H+ | ===Transport of H+ to IC space=== | ||
* Occurs in [[hypokalemia]]. Decreased extracellular K+, potassium transports from the cells, and to keep electrical potential in a balanced state, H+ | * Occurs in [[hypokalemia]]. Decreased extracellular K+, potassium transports from the cells, and to keep electrical potential in a balanced state, Transport of H+ to IC space. | ||
===Contraction | ===Contraction Alkalosis=== | ||
* | * Loss of low concerntation of HCO3 mixed H2O in EC space by diuretics. HCO3 is elevated in serum.. | ||
=== | ===Compensatory mechanism of Metabolic Alkalosis=== | ||
* | * [[hypoventilation]] ([[respiratory compensation]]) elevates pH by restoring [[carbon dioxide]] (CO<sub>2</sub>) through . Carbonic acid is generated by CO<sub>2</sub>. The acidic medium is created for compensation. | ||
* The pCO2 | * The pCO2 elevates from 0.5 to 1 per 1 u serum HCO3 elevation. | ||
* | * Body can compensate up tp 55-60 mmHg of partial pressure of CO2. | ||
* | * Increased secretion of HCO<sub>3</sub><sup>-</sup> (bicarbonate) by kidney is done. | ||
==Genetics== | ==Genetics== |
Latest revision as of 04:57, 25 February 2021
Metabolic alkalosis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Metabolic alkalosis pathophysiology On the Web |
American Roentgen Ray Society Images of Metabolic alkalosis pathophysiology |
Risk calculators and risk factors for Metabolic alkalosis pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Marufa Marium, M.B.B.S[2]
Overview
The normal physiological pH of blood is 7.35 to 7.45. An increase above this range is known to be Alkalosis. Metabolic Alkalosis is defined as a disease state where blood pH is more than 7.45 due to secondary metabolic processes. The primary pH buffers in maintaining chemical equilibrium of physiological Blood pH are alkaline Bicarbonate ions(HCO3) and acidic carbon dioxide(CO2). When there is increase amount of Bicarbonate(HCO3) in body or decrease amount of carbon dioxide or loss of hydrogen ions it causes alkalosis. Metabolic alkalosis occurs due to trapping of Bicarbonate ions (HCO3) or loss of hydrogen ions in body due to some metabolic causes for example- gastrointestinal loss of hydrogen ions, intracellular shifting of hydrogen ions, renal hydrogen loss, increased bicarbonate ions in extracellular compartment, diuretic induced alkalosis or contraction alkalosis. Patient with normal renal physiology will compensate this increase amount of bicarbonate through excretion. But impaired renal function secondary to chloride depletion, hypokalemia, hyperaldosteronism, reduced glomerular function rate, reduced effective arterial blood volume (EABV)) in heart failure or cirrhosis will lead to metabolic alkalosis. When the physiologic blood pH is above 7.45, it triggers respiratory center to cause hypoventilation, thus decreased PCO2 leading to compensatory respiratory acidosis. The PCO2 elavates from 0.5 to 0.7 mmHg per 1.0 millimole elevation in plasma bicarbonate concentration. In severe Metabolic alkalosis PCO2 can reach 60 mmHg. The mortality rate with metabolic alkalosis is 45% with arterial blood pH 7.55 to 80% with arterial blood pH of 7.65. Supportive Treatment is usually given according to cause of the disease.
Pathophysiology
H+ loss
Gastrointestinal loss
- [[Emesis] (most commonly seen in pyloric stenosis), NG suction , Zollinger-ellison syndrome, Bulimia.[1]
- Diuretics: Loop and thiazide diuretics.
- Diarrhea: Villous adenoma[2], congenital chloride diarrhea[3]
- Cystic fibrosis.[4]
- Chloride deficient infant formula.
- Gastrocystoplasty [5]
- Post hypercapneic metabolic alkalosis.
Renal
- Dietary potassium depletion.[6]
- Primary hyperaldosteronism: Conn syndrome or adenoma, hyperplasia, carcinoma, renin or glucocorticoid responsive.
- Secondary hyperaldosteronism: Reno vascular hypertension, edema (cirrhosis, heart failure, nephrotic syndrome), juxtaglomerular cell(renin producing) tumor, renal cell carcinoma, hemangiopericytoma, nephroblastoma
- Mineralocorticoid excess due to primary decorticosterone excess (11 beta, 17 alpha hydroxylase deficiency), licorice(glycyrrhetinic acid), liddle syndrome.[7] [8]
- Bartter and Gitelman syndrome. [9]
Elevated HCO3- level in serum
- Intake of NaCO3, citrate, baking powder, lactate and acetate.
Transport of H+ to IC space
- Occurs in hypokalemia. Decreased extracellular K+, potassium transports from the cells, and to keep electrical potential in a balanced state, Transport of H+ to IC space.
Contraction Alkalosis
- Loss of low concerntation of HCO3 mixed H2O in EC space by diuretics. HCO3 is elevated in serum..
Compensatory mechanism of Metabolic Alkalosis
- hypoventilation (respiratory compensation) elevates pH by restoring carbon dioxide (CO2) through . Carbonic acid is generated by CO2. The acidic medium is created for compensation.
- The pCO2 elevates from 0.5 to 1 per 1 u serum HCO3 elevation.
- Body can compensate up tp 55-60 mmHg of partial pressure of CO2.
- Increased secretion of HCO3- (bicarbonate) by kidney is done.
Genetics
- Genes involved in the pathogenesis of Metabolic Alkalosis include CFTR, SCNN1A/SCNN1B/SCNN1G[10], NKCC2[11] SLC12A3/CLCNKB[12] and SLC26A3 [13] causing Cystic Fibrosis, Liddle Syndrome, Bartter syndrome, Gitelman syndrome and Congenital Chloride Diarrhhea respectively.
Associated Conditions
Conditions associated with metabolic alkalosis :
- Vomiting (most commonly seen in pyloric stenosis
- NG suction
- Zollinger-ellison syndrome
- Bulimia.[1]
- Diuretics: Loop and thiazide diuretics.
- Villous adenoma[2]
- congenital chloride diarrhea[3]
- Cystic fibrosis[4]
- Chloride deficient infant formula.
- Gastrocystoplasty [5]
- Post hypercapneic metabolic alkalosis.
- Dietary potassium depletion.[6]
- Primary hyperaldosteronism: Conn syndrome or adenoma, hyperplasia, carcinoma, renin or glucocorticoid responsive.
- Secondary hyperaldosteronism: Reno vascular hypertension, edema (cirrhosis, heart failure, nephrotic syndrome), juxtaglomerular cell(renin producing) tumor, renal cell carcinoma, hemangiopericytoma, nephroblastoma
- Mineralocorticoid excess due to primary decorticosterone excess (11 beta, 17 alpha hydroxylase deficiency), licorice(glycyrrhetinic acid), liddle syndrome.[7] [8]
- Bartter and Gitelman syndrome. [9]
- Laxative
- Chronic kidney disease
- Hypovolemia or massive diuresis with loop diuretics.
- Milk-alkali syndrome or bone metastasis.
- Massive blood transfusion.
- Acetate containing colloid sollution.
- Exogenous alkali admintration.
- Combined antacid and cation exchange resin administration.
- Sodium penicillins.
Gross Pathology
- There is no specific gross pathological finding related to metabolic alkalosis. Gross characteristics are dependent on specific cause of metabolic alkalosis.
Microscopic Pathology
- There is no specific microscopic pathological finding related to metabolic alkalosis. Gross characteristics are dependent on specific cause of metabolic alkalosis.
References
- ↑ 1.0 1.1 Galla JH, Gifford JD, Luke RG, Rome L (October 1991). "Adaptations to chloride-depletion alkalosis". Am J Physiol. 261 (4 Pt 2): R771–81. doi:10.1152/ajpregu.1991.261.4.R771. PMID 1928424.
- ↑ 2.0 2.1 Babior BM (October 1966). "Villous adenoma of the colon. Study of a patient with severe fluid and electrolyte disturbances". Am J Med. 41 (4): 615–21. doi:10.1016/0002-9343(66)90223-3. PMID 5927076.
- ↑ 3.0 3.1 Höglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (November 1996). "Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea". Nat Genet. 14 (3): 316–9. doi:10.1038/ng1196-316. PMID 8896562.
- ↑ 4.0 4.1 Pedroli G, Liechti-Gallati S, Mauri S, Birrer P, Kraemer R, Foletti-Jäggi C, Bianchetti MG (1995). "Chronic metabolic alkalosis: not uncommon in young children with severe cystic fibrosis". Am J Nephrol. 15 (3): 245–50. doi:10.1159/000168839. PMID 7618650.
- ↑ 5.0 5.1 Plawker MW, Rabinowitz SS, Etwaru DJ, Glassberg KI (August 1995). "Hypergastrinemia, dysuria-hematuria and metabolic alkalosis: complications associated with gastrocystoplasty". J Urol. 154 (2 Pt 1): 546–9. doi:10.1097/00005392-199508000-00066. PMID 7609133.
- ↑ 6.0 6.1 Sabatini S (March 1996). "The cellular basis of metabolic alkalosis". Kidney Int. 49 (3): 906–17. doi:10.1038/ki.1996.125. PMID 8648937.
- ↑ 7.0 7.1 Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM (January 1992). "A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension". Nature. 355 (6357): 262–5. doi:10.1038/355262a0. PMID 1731223.
- ↑ 8.0 8.1 Warnock DG (January 1998). "Liddle syndrome: an autosomal dominant form of human hypertension". Kidney Int. 53 (1): 18–24. doi:10.1046/j.1523-1755.1998.00728.x. PMID 9452995.
- ↑ 9.0 9.1 Kurtz I (October 1998). "Molecular pathogenesis of Bartter's and Gitelman's syndromes". Kidney Int. 54 (4): 1396–410. doi:10.1046/j.1523-1755.1998.00124.x. PMID 9767561.
- ↑ Tetti M, Monticone S, Burrello J, Matarazzo P, Veglio F, Pasini B, Jeunemaitre X, Mulatero P (March 2018). "Liddle Syndrome: Review of the Literature and Description of a New Case". Int J Mol Sci. 19 (3). doi:10.3390/ijms19030812. PMC 5877673. PMID 29534496.
- ↑ Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP (October 1996). "Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK". Nat Genet. 14 (2): 152–6. doi:10.1038/ng1096-152. PMID 8841184.
- ↑ Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, Grisart B, Bridoux F, Unwin R, Moulin B, Haymann JP, Vantyghem MC, Rigothier C, Dussol B, Godin M, Nivet H, Dubourg L, Tack I, Gimenez-Roqueplo AP, Houillier P, Blanchard A, Devuyst O, Jeunemaitre X (April 2011). "Spectrum of mutations in Gitelman syndrome". J Am Soc Nephrol. 22 (4): 693–703. doi:10.1681/ASN.2010090907. PMC 3065225. PMID 21415153.
- ↑ Kamal NM, Khan HY, El-Shabrawi M, Sherief LM (May 2019). "Congenital chloride losing diarrhea: A single center experience in a highly consanguineous population". Medicine (Baltimore). 98 (22): e15928. doi:10.1097/MD.0000000000015928. PMC 6709049 Check
|pmc=
value (help). PMID 31145360. Vancouver style error: initials (help)