Central nervous system stimulants: Difference between revisions
Line 20: | Line 20: | ||
Central Nervous System (CNS) stimulants cross the blood-brain barrier and influence neurotransmission through different mechanisms with resultant sympathomimetic effects. They mainly act on neurotransmitter systems, particularly dopamine, norepinephrine, and serotonin, increasing the release of these neurotransmitters or blocking their reuptake. Psychoactive drugs include mainly cocaine, amphetamine, methamphetamine, and caffeine.<ref name="George2000">{{cite journal|last1=George|first1=Alan J.|title=Central nervous system stimulants|journal=Best Practice & Research Clinical Endocrinology & Metabolism|volume=14|issue=1|year=2000|pages=79–88|issn=1521690X|doi=10.1053/beem.2000.0055}}</ref> <ref name="Kaleta2020">{{cite journal|last1=Kaleta|first1=Erin|title=Central nervous system stimulants|year=2020|pages=227–238|doi=10.1016/B978-0-12-815846-3.00014-4}}</ref> | Central Nervous System (CNS) stimulants cross the blood-brain barrier and influence neurotransmission through different mechanisms with resultant sympathomimetic effects. They mainly act on neurotransmitter systems, particularly dopamine, norepinephrine, and serotonin, increasing the release of these neurotransmitters or blocking their reuptake. Psychoactive drugs include mainly cocaine, amphetamine, methamphetamine, and caffeine.<ref name="George2000">{{cite journal|last1=George|first1=Alan J.|title=Central nervous system stimulants|journal=Best Practice & Research Clinical Endocrinology & Metabolism|volume=14|issue=1|year=2000|pages=79–88|issn=1521690X|doi=10.1053/beem.2000.0055}}</ref> <ref name="Kaleta2020">{{cite journal|last1=Kaleta|first1=Erin|title=Central nervous system stimulants|year=2020|pages=227–238|doi=10.1016/B978-0-12-815846-3.00014-4}}</ref> | ||
== | ==Cocaine== | ||
Cocaine (benzoylmethylecgonine) is derived from Erythroxylan coca extract, a plant found in Western South America. It exists in two forms: salt form and a free-base form. These formulations are essential as they determine the route of administration whereby the salt form is used via nasal inhalation or injection while the free-base form is administered with smoking. It is used for anesthesia and vasoconstriction in nasal surgery clinically; however, it is more notorious as a commonly abused substance.<ref name="Benowitz1993">{{cite journal|last1=Benowitz|first1=Neal L.|title=Clinical Pharmacology and Toxicology of Cocaine|journal=Pharmacology & Toxicology|volume=72|issue=1|year=1993|pages=3–12|issn=09019928|doi=10.1111/j.1600-0773.1993.tb01331.x}}</ref> | |||
The | ===Mechanism of Action=== | ||
Cocaine inhibits the reuptake of dopamine by binding to the transporter proteins. This inhibition increases the availability of dopamine in the synaptic cleft. This action is responsible for the euphoria in cocaine use. The sympathetic effects of cocaine use are due to the inhibition of norepinephrine reuptake in a similar mechanism as the dopamine reuptake inhibition. The decrease explains the development of tolerance in cocaine use in the number of dopamine receptors in the post-synaptic neuron and subsequent upregulation of dopamine transporters and cocaine receptors to achieve the same euphoric effects. <ref name="Kaleta2020">{{cite journal|last1=Kaleta|first1=Erin|title=Central nervous system stimulants|year=2020|pages=227–238|doi=10.1016/B978-0-12-815846-3.00014-4}}</ref> <ref name={{cite book | last = Kerrigan | first = Sarah | title = Principles of forensic toxicology | publisher = Springer | location = Cham | year = 2020 | isbn = 978-3-030-42917-1 }}</ref> <ref name={{cite book | last = Burtis | first = Carl | title = Tietz Textbook of Clinical Chemistry and Molecular Diagnostics | publisher = Elsevier Health Sciences | location = London | year = 2012 | isbn = 9781455759422 }}</ref> <ref name="SofuogluSewell2009">{{cite journal|last1=Sofuoglu|first1=Mehmet|last2=Sewell|first2=R. Andrew|title=Norepinephrine and stimulant addiction|journal=Addiction Biology|volume=14|issue=2|year=2009|pages=119–129|issn=13556215|doi=10.1111/j.1369-1600.2008.00138.x}}</ref> | |||
===Acute Toxicity=== | |||
Acute cocaine toxicity is characterized by sympathetic symptoms such as hypertension, hyperthermia, agitation, and seizures.<ref name="pmid23978563">{{cite journal| author=Connors NJ, Hoffman RS| title=Experimental treatments for cocaine toxicity: a difficult transition to the bedside. | journal=J Pharmacol Exp Ther | year= 2013 | volume= 347 | issue= 2 | pages= 251-7 | pmid=23978563 | doi=10.1124/jpet.113.206383 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23978563 }} </ref> The vasoconstrictive effects of cocaine induce arterial spasm, increased myocardial oxygen demand, and ultimately, myocardial infarction. Cocaine also binds to sodium channels inhibiting depolarization of heart muscles.<ref name="pmid10351966">{{cite journal| author=Mittleman MA, Mintzer D, Maclure M, Tofler GH, Sherwood JB, Muller JE| title=Triggering of myocardial infarction by cocaine. | journal=Circulation | year= 1999 | volume= 99 | issue= 21 | pages= 2737-41 | pmid=10351966 | doi=10.1161/01.cir.99.21.2737 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10351966 }} </ref> Cocaine toxicity also causes changes in cardiac architecture mediated by interstitial fibrosis and destruction of myofibrils that may subsequently cause dilated cardiomyopathy. The long-term effects of cocaine on the heart assessed by cardiovascular magnetic resonance.<ref name="MaceiraRipoll2014">{{cite journal|last1=Maceira|first1=Alicia M|last2=Ripoll|first2=Carmen|last3=Cosin-Sales|first3=Juan|last4=Igual|first4=Begoña|last5=Gavilan|first5=Mirella|last6=Salazar|first6=Jose|last7=Belloch|first7=Vicente|last8=Pennell|first8=Dudley J|title=Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T|journal=Journal of Cardiovascular Magnetic Resonance|volume=16|issue=1|year=2014|pages=26|issn=1532-429X|doi=10.1186/1532-429X-16-26}}</ref> | |||
===Management=== | |||
Benzodiazepines enhance the inhibitory effects of gamma-aminobutyric acid (GABA), leading to sedation and a decrease in sympathetic outflow. They are used as first-line treatment for cocaine-associated chest pain and myocardial infarction while also addresses agitation. Although, adverse side effects must be considered, such as paradoxical agitation, decreased vagal tone, and increased heart rate.<ref name="RichardsGarber2016">{{cite journal|last1=Richards|first1=John R.|last2=Garber|first2=Dariush|last3=Laurin|first3=Erik G.|last4=Albertson|first4=Timothy E.|last5=Derlet|first5=Robert W.|last6=Amsterdam|first6=Ezra A.|last7=Olson|first7=Kent R.|last8=Ramoska|first8=Edward A.|last9=Lange|first9=Richard A.|title=Treatment of cocaine cardiovascular toxicity: a systematic review|journal=Clinical Toxicology|volume=54|issue=5|year=2016|pages=345–364|issn=1556-3650|doi=10.3109/15563650.2016.1142090}}</ref> | |||
Calcium channel blockers have also been studied to address increased systemic vascular resistance and coronary vasospasm. However, reflex tachycardia may occur as a side effect. The 2013 ACC/AHA guideline recommends oral or calcium channel blockers (Class I-C evidence) in treating cocaine-induced chest pain with ST-segment changes. Nitroglycerin and nitroprusside are used to treat cocaine-induced hypertension, coronary artery vasospasm, and chest pain, although the potential for hypotension, reflex tachycardia, and treatment failure must be recognized.<ref name="AndersonAdams2013">{{cite journal|last1=Anderson|first1=Jeffrey L.|last2=Adams|first2=Cynthia D.|last3=Antman|first3=Elliott M.|last4=Bridges|first4=Charles R.|last5=Califf|first5=Robert M.|last6=Casey|first6=Donald E.|last7=Chavey|first7=William E.|last8=Fesmire|first8=Francis M.|last9=Hochman|first9=Judith S.|last10=Levin|first10=Thomas N.|last11=Lincoff|first11=A. Michael|last12=Peterson|first12=Eric D.|last13=Theroux|first13=Pierre|last14=Wenger|first14=Nanette K.|last15=Wright|first15=R. Scott|last16=Zoghbi|first16=William A.|last17=Arend|first17=Thomas E.|last18=Oetgen|first18=William J.|last19=May|first19=Charlene|last20=Bradfield|first20=Lisa|last21=Keller|first21=Sue|last22=Ramadhan|first22=Ezaldeen|last23=Tomaselli|first23=Gordon F.|last24=Brown|first24=Nancy|last25=Robertson|first25=Rose Marie|last26=Whitman|first26=Gayle R.|last27=Bezanson|first27=Judy L.|last28=Hundley|first28=Jody|title=2012 ACCF/AHA Focused Update Incorporated Into the ACCF/AHA 2007 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction|journal=Circulation|volume=127|issue=23|year=2013|issn=0009-7322|doi=10.1161/CIR.0b013e31828478ac}}</ref> | |||
Antipsychotics control agitation and psychosis, and combination treatment with benzodiazepines and antipsychotics are more effective than monotherapy.<ref name="Zun2018">{{cite journal|last1=Zun|first1=Leslie S.|title=Evidence-Based Review of Pharmacotherapy for Acute Agitation. Part 1: Onset of Efficacy|journal=The Journal of Emergency Medicine|volume=54|issue=3|year=2018|pages=364–374|issn=07364679|doi=10.1016/j.jemermed.2017.10.011}}</ref> | |||
Hyperthermia from cocaine toxicity is best treated with external cooling measures such as tepid water misting with convection cooling from a fan. Rapid cooling decreases temperature-induced vasodilation and prevents protein denaturation, and subsequently reduces cardiac output by reducing myocardial oxygen demand.<ref name="Kaleta2020">{{cite journal|last1=Kaleta|first1=Erin|title=Central nervous system stimulants|year=2020|pages=227–238|doi=10.1016/B978-0-12-815846-3.00014-4}}</ref> | |||
==Classification== | ==Classification== |
Revision as of 01:25, 13 June 2021
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Chelsea Mae Nobleza, M.D.[2]
Synonyms and keywords:
Special consideration when adding information from observational studies
Template Sentence for Observational Study |
---|
“Among (number of/other important demographic information) patients in (location), (exposure) was associated with (outcome) in observational data” (REF) |
Example:
|
Overview
Central Nervous System (CNS) stimulants cross the blood-brain barrier and influence neurotransmission through different mechanisms with resultant sympathomimetic effects. They mainly act on neurotransmitter systems, particularly dopamine, norepinephrine, and serotonin, increasing the release of these neurotransmitters or blocking their reuptake. Psychoactive drugs include mainly cocaine, amphetamine, methamphetamine, and caffeine.[1] [2]
Cocaine
Cocaine (benzoylmethylecgonine) is derived from Erythroxylan coca extract, a plant found in Western South America. It exists in two forms: salt form and a free-base form. These formulations are essential as they determine the route of administration whereby the salt form is used via nasal inhalation or injection while the free-base form is administered with smoking. It is used for anesthesia and vasoconstriction in nasal surgery clinically; however, it is more notorious as a commonly abused substance.[3]
Mechanism of Action
Cocaine inhibits the reuptake of dopamine by binding to the transporter proteins. This inhibition increases the availability of dopamine in the synaptic cleft. This action is responsible for the euphoria in cocaine use. The sympathetic effects of cocaine use are due to the inhibition of norepinephrine reuptake in a similar mechanism as the dopamine reuptake inhibition. The decrease explains the development of tolerance in cocaine use in the number of dopamine receptors in the post-synaptic neuron and subsequent upregulation of dopamine transporters and cocaine receptors to achieve the same euphoric effects. [2] Invalid parameter in <ref>
tag [4]
Acute Toxicity
Acute cocaine toxicity is characterized by sympathetic symptoms such as hypertension, hyperthermia, agitation, and seizures.[5] The vasoconstrictive effects of cocaine induce arterial spasm, increased myocardial oxygen demand, and ultimately, myocardial infarction. Cocaine also binds to sodium channels inhibiting depolarization of heart muscles.[6] Cocaine toxicity also causes changes in cardiac architecture mediated by interstitial fibrosis and destruction of myofibrils that may subsequently cause dilated cardiomyopathy. The long-term effects of cocaine on the heart assessed by cardiovascular magnetic resonance.[7]
Management
Benzodiazepines enhance the inhibitory effects of gamma-aminobutyric acid (GABA), leading to sedation and a decrease in sympathetic outflow. They are used as first-line treatment for cocaine-associated chest pain and myocardial infarction while also addresses agitation. Although, adverse side effects must be considered, such as paradoxical agitation, decreased vagal tone, and increased heart rate.[8] Calcium channel blockers have also been studied to address increased systemic vascular resistance and coronary vasospasm. However, reflex tachycardia may occur as a side effect. The 2013 ACC/AHA guideline recommends oral or calcium channel blockers (Class I-C evidence) in treating cocaine-induced chest pain with ST-segment changes. Nitroglycerin and nitroprusside are used to treat cocaine-induced hypertension, coronary artery vasospasm, and chest pain, although the potential for hypotension, reflex tachycardia, and treatment failure must be recognized.[9] Antipsychotics control agitation and psychosis, and combination treatment with benzodiazepines and antipsychotics are more effective than monotherapy.[10] Hyperthermia from cocaine toxicity is best treated with external cooling measures such as tepid water misting with convection cooling from a fan. Rapid cooling decreases temperature-induced vasodilation and prevents protein denaturation, and subsequently reduces cardiac output by reducing myocardial oxygen demand.[2]
Classification
There is no established system for the classification of [disease name].
OR
[Disease name] may be classified according to [classification method] into [number] subtypes/groups: [group1], [group2], [group3], and [group4].
OR
[Disease name] may be classified into [large number > 6] subtypes based on [classification method 1], [classification method 2], and [classification method 3]. [Disease name] may be classified into several subtypes based on [classification method 1], [classification method 2], and [classification method 3].
OR
Based on the duration of symptoms, [disease name] may be classified as either acute or chronic.
OR
If the staging system involves specific and characteristic findings and features: According to the [staging system + reference], there are [number] stages of [malignancy name] based on the [finding1], [finding2], and [finding3]. Each stage is assigned a [letter/number1] and a [letter/number2] that designate the [feature1] and [feature2].
OR
The staging of [malignancy name] is based on the [staging system].
OR
There is no established system for the staging of [malignancy name].
Pathophysiology
The exact pathogenesis of [disease name] is not fully understood.
OR
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
OR
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
OR
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
OR
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
OR
The progression to [disease name] usually involves the [molecular pathway].
OR
The pathophysiology of [disease/malignancy] depends on the histological subtype.
Causes
Disease name] may be caused by [cause1], [cause2], or [cause3].
OR
Common causes of [disease] include [cause1], [cause2], and [cause3].
OR
The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].
OR
The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.
Differentiating ((Page name)) from other Diseases
[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
OR
[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].
Epidemiology and Demographics
The incidence/prevalence of [disease name] is approximately [number range] per 100,000 individuals worldwide.
OR
In [year], the incidence/prevalence of [disease name] was estimated to be [number range] cases per 100,000 individuals worldwide.
OR
In [year], the incidence of [disease name] is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.
Patients of all age groups may develop [disease name].
OR
The incidence of [disease name] increases with age; the median age at diagnosis is [#] years.
OR
[Disease name] commonly affects individuals younger than/older than [number of years] years of age.
OR
[Chronic disease name] is usually first diagnosed among [age group].
OR
[Acute disease name] commonly affects [age group].
There is no racial predilection to [disease name].
OR
[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].
[Disease name] affects men and women equally.
OR
[Gender 1] are more commonly affected by [disease name] than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.
The majority of [disease name] cases are reported in [geographical region].
OR
[Disease name] is a common/rare disease that tends to affect [patient population 1] and [patient population 2].
Risk Factors
There are no established risk factors for [disease name].
OR
The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.
Screening
There is insufficient evidence to recommend routine screening for [disease/malignancy].
OR
According to the [guideline name], screening for [disease name] is not recommended.
OR
According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].
Natural History, Complications, and Prognosis
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
OR
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
OR
Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
Diagnosis
Diagnostic Study of Choice
The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].
OR
The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].
OR
The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].
OR
There are no established criteria for the diagnosis of [disease name].
History and Symptoms
The majority of patients with [disease name] are asymptomatic.
OR
The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].
Physical Examination
Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].
OR
Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
The presence of [finding(s)] on physical examination is diagnostic of [disease name].
OR
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].
Laboratory Findings
An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].
OR
Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
OR
[Test] is usually normal among patients with [disease name].
OR
Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].
OR
There are no diagnostic laboratory findings associated with [disease name].
Electrocardiogram
There are no ECG findings associated with [disease name].
OR
An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
X-ray
There are no x-ray findings associated with [disease name].
OR
An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Echocardiography or Ultrasound
There are no echocardiography/ultrasound findings associated with [disease name].
OR
Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
CT scan
There are no CT scan findings associated with [disease name].
OR
[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
MRI
There are no MRI findings associated with [disease name].
OR
[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Other Imaging Findings
There are no other imaging findings associated with [disease name].
OR
[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
There are no other diagnostic studies associated with [disease name].
OR
[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
There is no treatment for [disease name]; the mainstay of therapy is supportive care.
OR
Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].
OR
The majority of cases of [disease name] are self-limited and require only supportive care.
OR
[Disease name] is a medical emergency and requires prompt treatment.
OR
The mainstay of treatment for [disease name] is [therapy].
OR The optimal therapy for [malignancy name] depends on the stage at diagnosis.
OR
[Therapy] is recommended among all patients who develop [disease name].
OR
Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].
OR
Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].
OR
Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].
OR
Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].
Surgery
Surgical intervention is not recommended for the management of [disease name].
OR
Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]
OR
The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].
OR
The feasibility of surgery depends on the stage of [malignancy] at diagnosis.
OR
Surgery is the mainstay of treatment for [disease or malignancy].
Primary Prevention
There are no established measures for the primary prevention of [disease name].
OR
There are no available vaccines against [disease name].
OR
Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
OR
[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].
Secondary Prevention
There are no established measures for the secondary prevention of [disease name].
OR
Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].
References
- ↑ George, Alan J. (2000). "Central nervous system stimulants". Best Practice & Research Clinical Endocrinology & Metabolism. 14 (1): 79–88. doi:10.1053/beem.2000.0055. ISSN 1521-690X.
- ↑ 2.0 2.1 2.2 Kaleta, Erin (2020). "Central nervous system stimulants": 227–238. doi:10.1016/B978-0-12-815846-3.00014-4.
- ↑ Benowitz, Neal L. (1993). "Clinical Pharmacology and Toxicology of Cocaine". Pharmacology & Toxicology. 72 (1): 3–12. doi:10.1111/j.1600-0773.1993.tb01331.x. ISSN 0901-9928.
- ↑ Sofuoglu, Mehmet; Sewell, R. Andrew (2009). "Norepinephrine and stimulant addiction". Addiction Biology. 14 (2): 119–129. doi:10.1111/j.1369-1600.2008.00138.x. ISSN 1355-6215.
- ↑ Connors NJ, Hoffman RS (2013). "Experimental treatments for cocaine toxicity: a difficult transition to the bedside". J Pharmacol Exp Ther. 347 (2): 251–7. doi:10.1124/jpet.113.206383. PMID 23978563.
- ↑ Mittleman MA, Mintzer D, Maclure M, Tofler GH, Sherwood JB, Muller JE (1999). "Triggering of myocardial infarction by cocaine". Circulation. 99 (21): 2737–41. doi:10.1161/01.cir.99.21.2737. PMID 10351966.
- ↑ Maceira, Alicia M; Ripoll, Carmen; Cosin-Sales, Juan; Igual, Begoña; Gavilan, Mirella; Salazar, Jose; Belloch, Vicente; Pennell, Dudley J (2014). "Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T". Journal of Cardiovascular Magnetic Resonance. 16 (1): 26. doi:10.1186/1532-429X-16-26. ISSN 1532-429X.
- ↑ Richards, John R.; Garber, Dariush; Laurin, Erik G.; Albertson, Timothy E.; Derlet, Robert W.; Amsterdam, Ezra A.; Olson, Kent R.; Ramoska, Edward A.; Lange, Richard A. (2016). "Treatment of cocaine cardiovascular toxicity: a systematic review". Clinical Toxicology. 54 (5): 345–364. doi:10.3109/15563650.2016.1142090. ISSN 1556-3650.
- ↑ Anderson, Jeffrey L.; Adams, Cynthia D.; Antman, Elliott M.; Bridges, Charles R.; Califf, Robert M.; Casey, Donald E.; Chavey, William E.; Fesmire, Francis M.; Hochman, Judith S.; Levin, Thomas N.; Lincoff, A. Michael; Peterson, Eric D.; Theroux, Pierre; Wenger, Nanette K.; Wright, R. Scott; Zoghbi, William A.; Arend, Thomas E.; Oetgen, William J.; May, Charlene; Bradfield, Lisa; Keller, Sue; Ramadhan, Ezaldeen; Tomaselli, Gordon F.; Brown, Nancy; Robertson, Rose Marie; Whitman, Gayle R.; Bezanson, Judy L.; Hundley, Jody (2013). "2012 ACCF/AHA Focused Update Incorporated Into the ACCF/AHA 2007 Guidelines for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction". Circulation. 127 (23). doi:10.1161/CIR.0b013e31828478ac. ISSN 0009-7322.
- ↑ Zun, Leslie S. (2018). "Evidence-Based Review of Pharmacotherapy for Acute Agitation. Part 1: Onset of Efficacy". The Journal of Emergency Medicine. 54 (3): 364–374. doi:10.1016/j.jemermed.2017.10.011. ISSN 0736-4679.