First degree AV block overview: Difference between revisions

Jump to navigation Jump to search
Sara Zand (talk | contribs)
Sara Zand (talk | contribs)
Line 33: Line 33:


==Natural History, Complications, and Prognosis==
==Natural History, Complications, and Prognosis==
Isolated first degree heart block has few if any clinical consequences. There are no symptoms or signs associated with it, and there is little danger of progression to [[complete heart block]].
[[First-degree]] [[atrioventricular block]] may be due to conduction delay in the [[atrium]], [[atrioventricular node]], and/or [[His-Purkinje system]]. The [[atrioventricular node]] is the site most commonly involved in [[ adults]]. However, more than 1 site of [[conduction ]] delay is often present. Isolated [[First-degree atrioventricular]] has few [[clinical]] consequences. There are no [[symptoms]] or [[signs ]] associated with it. [[First-degree AV block]]  rarely progresses to  more severe form of [[conduction abnormalities]]. In the setting of [[neuromuscular]] [[diseases]] such as [[myotonic dystrophy]] 1  with conduction abnormalities in the [[heart]], [[First-degree AV block]] may progress to [[complete heart block]] during variable period of time. Common complications associated with [[first-degree heart block]] may include increased risk of [[atrial fibrillation]], increased risk of [[pacemaker]] implantation. Prognosis of [[First degree AV block]] is generally good. However, some studies showed  worse prognosis with [[PR prolongation]]. Presence of [[First degree AV block]] is shown to be associated with a higher risk of [[cardiovascular]] and [[all-cause mortality]] as well as higher risk of [[heart failure]], [[left ventricular]] dysfunction, and [[atrial fibrillation]].


==Diagnosis==
==Diagnosis==

Revision as of 05:05, 25 July 2021

First degree AV block Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Classification

Causes

Differentiating First degree AV block from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

EKG Examples

Chest X Ray

Echocardiography

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

First degree AV block overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

slides

Images

American Roentgen Ray Society Images of First degree AV block overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on First degree AV block overview

CDC on First degree AV block overview

First degree AV block overview in the news

Blogs on First degree AV block overview

Directions to Hospitals Treating First degree AV block

Risk calculators and risk factors for First degree AV block overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohammed Salih, M.D., Cafer Zorkun, M.D., Ph.D. [2], Ahmed Elsaiey, MBBCH [3]

Overview

First-degree AV block is a disease of the electrical conduction system of the heart in which the PR interval is prolonged. It is defined as PR prolongation of more than 200 milliseconds (normal PR interval is between 120 and 200 msec). First-degree AV block was first described by Dr. Engelmann in 1984. Dr. Ashmar further studied the blocked impulses and their impact on the conduction in the myocardium. The atrioventricular node is a normal electrical pathway between the atria and ventricles and it is located in the right atrium. First-degree AV block pathogenesis can be attributed to an electrical conduction delay in the AV node or His-Purkinje system. First-degree AV block can be associated with normal QRS complex or wide QRS complex on the ECG. An atrioventricular block (or AV block) is a type of heart block involving impairment of the conduction between the atria and the ventricles of the heart. It usually involves the atrioventricular node, but it can involve other structures too. AV block is categorized according to the degree and the site of conduction block. In first-degree AV block, all atrial impulses are conducted to the ventricles; however, there is a delay in conduction within the AV node resulting in a prolonged PR interval on ECG (>200 msec or >5 small blocks). In other words, a first-degree AV block is a slowed conduction without loss of atrioventricular synchrony. Common causes of first-degree AV block include ischemic heart disease, congenital heart disease, electrolyte abnormalities (particularly hypokalemia and hypomagnesemia), inflammation, infections (endocarditis, rheumatic fever, Chagas disease, Lyme disease, diphtheria), drugs (antiarrhythmic Ia, Ic, II, III, IV and digoxin, β-blockers, calcium channel blockers ), infiltrative diseases (sarcoidosis), collagen vascular diseases (SLE, rheumatoid arthritis, scleroderma), idiopathic degenerative diseases (Lenegre and Lev diseases) and neuromuscular disorders and increased vagal tone in younger patients. First-degree AV block should be differentiated from [[third-degree AV block], second degree AV block, supraventricular tachycardia with long PR. The prevalence of First-degree AV block is approximately 1000-2000 per 100,000 individuals in developed countries. The incidence of First-degree AV block was estimated to be 1000 cases per 100,000 in children and adolescent athletes and significantly lower than adults due to lower vagal tone in children. First-degree AV block is more commonly observed among elderly patients. Men are more commonly affected with first-degree AV block than women. The male to female ratio is approximately 2 to 1. First-degree AV block was more commonly observed among African-American subjects compared with Caucasian subjects. Common risk factors associated with atioventricular block include older age, male sex, history of myocardial infarction, history of congestive heart disease , high systolic blood pressure, increased fasting blood glucose level. Ambulatory electrocardiographic monitoring is useful for screening of intermittent atrioventricular block, LBBB and bifascicular block in asymptomatic patients. In patients with symptomatic atrioventricular block or bradycardia during sleep, screening about sleep apnea is recommended. Screening for congenital complete heart block is recommended in pregnant women with Ro/SSA antibodies. Women with history of neonatal lupus, fetal echos are recommended weekly or every other week from week 18 to 28. It is unclear how often first degree heart block progresses to complete heart block, some cases my revert to normal sinus rhythm or complete heart block.

Historical Perspective

First-degree AV block was first described by Dr. Engelmann in 1984. Dr. Ashmar further studied the blocked impulses and their impact on the conduction in the myocardium.

Classification

There is no established system for the classification of First degree AV block.

Pathophysiology

The atrioventricular node is a normal electrical pathway between the atria and ventricles and it is located in the right atrium. First-degree AV block pathogenesis can be attributed to an electrical conduction delay in the AV node or His-Purkinje system. First-degree AV block can be associated with normal QRS complex or wide QRS complex on the ECG.

Causes

Common causes of first-degree AV block include ischemic heart disease, congenital heart disease, electrolyte abnormalities (particularly hypokalemia and hypomagnesemia), inflammation, infections (endocarditis, rheumatic fever, Chagas disease, Lyme disease, diphtheria), drugs (antiarrhythmic Ia, Ic, II, III, IV and digoxin, β-blockers, calcium channel blockers ), infiltrative diseases (sarcoidosis), collagen vascular diseases (SLE, rheumatoid arthritis, scleroderma), idiopathic degenerative diseases (Lenegre and Lev diseases) and neuromuscular disorders and increased vagal tone in younger patients.

Differentiating First Degree AV block from Other Diseases

First-degree AV block should be differentiated from [[third-degree AV block], second degree AV block, supraventricular tachycardia with long PR.

Epidemiology and Demographics

The prevalence of First-degree AV block is approximately 1000-2000 per 100,000 individuals in developed countries. The incidence of First-degree AV block was estimated to be 1000 cases per 100,000 in children and adolescent athletes and significantly lower than adults due to lower vagal tone in children. First-degree AV block is more commonly observed among elderly patients. Men are more commonly affected with first-degree AV block than women. The male to female ratio is approximately 2 to 1. First-degree AV block was more commonly observed among African-American subjects compared with Caucasian subjects.

Risk Factors

Common risk factors associated with atioventricular block include older age, male sex, history of myocardial infarction, history of congestive heart disease , high systolic blood pressure, increased fasting blood glucose level.

Screening

Ambulatory electrocardiographic monitoring is useful for screening of intermittent atrioventricular block, LBBB and bifascicular block in asymptomatic patients. In patients with symptomatic atrioventricular block or bradycardia during sleep, screening about sleep apnea is recommended. Screening for congenital complete heart block is recommended in pregnant women with Ro/SSA antibodies. Women with history of neonatal lupus, fetal echos are recommended weekly or every other week from week 18 to 28. It is unclear how often first degree heart block progresses to complete heart block, some cases my revert to normal sinus rhythm or complete heart block.

Natural History, Complications, and Prognosis

First-degree atrioventricular block may be due to conduction delay in the atrium, atrioventricular node, and/or His-Purkinje system. The atrioventricular node is the site most commonly involved in adults. However, more than 1 site of conduction delay is often present. Isolated First-degree atrioventricular has few clinical consequences. There are no symptoms or signs associated with it. First-degree AV block rarely progresses to more severe form of conduction abnormalities. In the setting of neuromuscular diseases such as myotonic dystrophy 1 with conduction abnormalities in the heart, First-degree AV block may progress to complete heart block during variable period of time. Common complications associated with first-degree heart block may include increased risk of atrial fibrillation, increased risk of pacemaker implantation. Prognosis of First degree AV block is generally good. However, some studies showed worse prognosis with PR prolongation. Presence of First degree AV block is shown to be associated with a higher risk of cardiovascular and all-cause mortality as well as higher risk of heart failure, left ventricular dysfunction, and atrial fibrillation.

Diagnosis

Diagnostic Study of Choice

History and Symptoms

First degree AV block patients are usually asymptomatic at rest. In the setting of left ventricular dysfunction markedly prolonged PR interval can causeexercise intolerance and syncope.

Physical Examination

First degree AV block is an incidental finding on an EKG and is not associated with specific physical examination findings.

Laboratory Findings

Electrocardiogram

In normal individuals, the AV node slows the conduction of electrical impulse through the heart. This is manifest on a surface EKG as the PR interval. The normal PR interval is from 120 milliseconds (ms) to 200 milliseconds (ms) in duration. This is measured from the initial deflection of the P wave to the beginning of the QRS complex.

In first degree heart block, the diseased AV node conducts the electrical activity slower. This is seen as a PR interval greater than 200 milliseconds (ms) in length on the surface EKG. It is usually an incidental finding on a routine EKG.

First degree heart block does not require any particular evaluation except for electrolyte and drug screens especially if an overdose is suspected.

X-ray

There are no x-ray findings associated with first degree AV block.

Echocardiography and Ultrasound

Ultrasound can be used in cases of first degree AV block in order to follow the improvement in the cardiac output when the dual chamber pacing used.

CT scan

MRI

Other Imaging Findings

There are no other imaging findings associated with first degree AV block.

Other Diagnostic Studies

There are no other diagnostic studies for first degree AV block.

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

There are no established measures for the secondary prevention of first degree heart block.

References


Template:WikiDoc Sources