COVID-19-associated stress cardiomyopathy: Difference between revisions

Jump to navigation Jump to search
Line 172: Line 172:
* [[Patients]] with [[stress cardiomyopathy]] associated with [[covid-19]] had a longer hospital days admission compared with the pre-pandemic period.<ref name="pmid32644140" />
* [[Patients]] with [[stress cardiomyopathy]] associated with [[covid-19]] had a longer hospital days admission compared with the pre-pandemic period.<ref name="pmid32644140" />
*In the presence of [[cardiogenic shock]], [[stress cardiomyopathy]] in critically ill [[covid-19]] [[patients]] may progress to develop [[pulmonary edema]], [[hemodynamic collapse]], and [[death]].
*In the presence of [[cardiogenic shock]], [[stress cardiomyopathy]] in critically ill [[covid-19]] [[patients]] may progress to develop [[pulmonary edema]], [[hemodynamic collapse]], and [[death]].
* [[Patients]] with secondary [[takotsubo cardiomyopathy]] may progress to develop [[cardiogenic shock]], [[respiratory failure]] requiring [[mechanical ventilation]] support and [[coagulation]] disorder. However, in  reported [[patients]] with [[takotsubo cardiomyopathy]] exacerbation of [[respiratory]] status may be due to [[covid-19]] complicating [[takotsubo cardiomyopathy]].   
* [[Patients]] with secondary [[takotsubo cardiomyopathy]] may experience [[cardiogenic shock]], [[respiratory failure]] requiring [[mechanical ventilation]] support and [[coagulation]] disorder. However, in  reported [[patients]] with [[takotsubo cardiomyopathy]] exacerbation of [[respiratory]] status may be due to [[covid-19]] complicating [[takotsubo cardiomyopathy]].   
* In general population most of the [[patients]] recover and have a normalized [[cardiac]] function within a few weeks.<ref name="pmid19106400">{{cite journal |vauthors=Akashi YJ, Goldstein DS, Barbaro G, Ueyama T |title=Takotsubo cardiomyopathy: a new form of acute, reversible heart failure |journal=Circulation |volume=118 |issue=25 |pages=2754–62 |year=2008 |pmid=19106400 |pmc=4893309 |doi=10.1161/CIRCULATIONAHA.108.767012 |url=}}</ref><ref name="pmid18294473">{{cite journal |vauthors=Prasad A, Lerman A, Rihal CS |title=Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction |journal=Am. Heart J. |volume=155 |issue=3 |pages=408–17 |year=2008 |pmid=18294473 |doi=10.1016/j.ahj.2007.11.008 |url=}}</ref><ref name="pmid19726776">{{cite journal |vauthors=Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER |title=Clinical problem-solving. A change of heart |journal=N. Engl. J. Med. |volume=361 |issue=10 |pages=1010–6 |year=2009 |pmid=19726776 |doi=10.1056/NEJMcps0903023 |url=}}</ref>
* In general population most of the [[patients]] recover and have a normalized [[cardiac]] function within a few weeks.<ref name="pmid19106400">{{cite journal |vauthors=Akashi YJ, Goldstein DS, Barbaro G, Ueyama T |title=Takotsubo cardiomyopathy: a new form of acute, reversible heart failure |journal=Circulation |volume=118 |issue=25 |pages=2754–62 |year=2008 |pmid=19106400 |pmc=4893309 |doi=10.1161/CIRCULATIONAHA.108.767012 |url=}}</ref><ref name="pmid18294473">{{cite journal |vauthors=Prasad A, Lerman A, Rihal CS |title=Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction |journal=Am. Heart J. |volume=155 |issue=3 |pages=408–17 |year=2008 |pmid=18294473 |doi=10.1016/j.ahj.2007.11.008 |url=}}</ref><ref name="pmid19726776">{{cite journal |vauthors=Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER |title=Clinical problem-solving. A change of heart |journal=N. Engl. J. Med. |volume=361 |issue=10 |pages=1010–6 |year=2009 |pmid=19726776 |doi=10.1056/NEJMcps0903023 |url=}}</ref>
* Prognosis of [[stress cardiomyopathy]] associated [[covid-19]] is not clearly described yet, and [[mortality rate]] of [[patients]] with [[stress cardiomyopathy]] during [[covid-19]] pandemic is approximately 5%  (similar to pre-pandemic [[covid-19]] period).<ref name="pmid32644140" />
* Prognosis of [[stress cardiomyopathy]] associated [[covid-19]] is not clearly described yet, and [[mortality rate]] of [[patients]] with [[stress cardiomyopathy]] during [[covid-19]] pandemic is approximately 5%  (similar to pre-pandemic [[covid-19]] period).<ref name="pmid32644140" />

Revision as of 15:16, 22 August 2021

WikiDoc Resources for COVID-19-associated stress cardiomyopathy

Articles

Most recent articles on COVID-19-associated stress cardiomyopathy

Most cited articles on COVID-19-associated stress cardiomyopathy

Review articles on COVID-19-associated stress cardiomyopathy

Articles on COVID-19-associated stress cardiomyopathy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated stress cardiomyopathy

Images of COVID-19-associated stress cardiomyopathy

Photos of COVID-19-associated stress cardiomyopathy

Podcasts & MP3s on COVID-19-associated stress cardiomyopathy

Videos on COVID-19-associated stress cardiomyopathy

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated stress cardiomyopathy

Bandolier on COVID-19-associated stress cardiomyopathy

TRIP on COVID-19-associated stress cardiomyopathy

Clinical Trials

Ongoing Trials on COVID-19-associated stress cardiomyopathy at Clinical Trials.gov

Trial results on COVID-19-associated stress cardiomyopathy

Clinical Trials on COVID-19-associated stress cardiomyopathy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated stress cardiomyopathy

NICE Guidance on COVID-19-associated stress cardiomyopathy

NHS PRODIGY Guidance

FDA on COVID-19-associated stress cardiomyopathy

CDC on COVID-19-associated stress cardiomyopathy

Books

Books on COVID-19-associated stress cardiomyopathy

News

COVID-19-associated stress cardiomyopathy in the news

Be alerted to news on COVID-19-associated stress cardiomyopathy

News trends on COVID-19-associated stress cardiomyopathy

Commentary

Blogs on COVID-19-associated stress cardiomyopathy

Definitions

Definitions of COVID-19-associated stress cardiomyopathy

Patient Resources / Community

Patient resources on COVID-19-associated stress cardiomyopathy

Discussion groups on COVID-19-associated stress cardiomyopathy

Patient Handouts on COVID-19-associated stress cardiomyopathy

Directions to Hospitals Treating COVID-19-associated stress cardiomyopathy

Risk calculators and risk factors for COVID-19-associated stress cardiomyopathy

Healthcare Provider Resources

Symptoms of COVID-19-associated stress cardiomyopathy

Causes & Risk Factors for COVID-19-associated stress cardiomyopathy

Diagnostic studies for COVID-19-associated stress cardiomyopathy

Treatment of COVID-19-associated stress cardiomyopathy

Continuing Medical Education (CME)

CME Programs on COVID-19-associated stress cardiomyopathy

International

COVID-19-associated stress cardiomyopathy en Espanol

COVID-19-associated stress cardiomyopathy en Francais

Business

COVID-19-associated stress cardiomyopathy in the Marketplace

Patents on COVID-19-associated stress cardiomyopathy

Experimental / Informatics

List of terms related to COVID-19-associated stress cardiomyopathy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: José Eduardo Riceto Loyola Junior, M.D.[2]

Synonyms and keywords: Takotsubo syndrome, Takotsubo cardiomyopathy, broken heart syndrome, Stress cardiomyopathy

Overview

COVID-19-associated stress cardiomyopathy was first described by Elena Roca, an Italian physician, in April 2020. This disorder is the result of extreme sympathetic stimulation due to the abnormal release of catecholamines and cortisol leading to rapid, severe, reversible cardiac dysfunction, as well as, wall motion abnormality of the left ventricle subtending more than one coronary artery territory, without evidence of significant obstructive coronary artery disease. Few cases of stress cardiomyopathy reported in literature due to direct consequences of covid-19 on the myocardium. However, due to increased psychological, social, economical distress during covid-19 pandemic, the incidence of stress cardiomyopathy in non-covid-19 patients increased significantly compared with prepandemic periods. In general, stress cardiomyopathy may develope in the setting of emotional or physical stress such as surgery, infection, hypoxia. The latter may have worse prognosis in terms of mortality compared with emotional trigger.

Historical Perspective

Classification




Apical type Midventricular type Basal type Focal type
Common type (>80%), hypokinesia or dyskinesia of midventricular and apical parts of anterior, septal, inferior and lateral walls of left ventricle associated with hyperkinesia of basal segments Hypokinesia or dyskinesia of midventricular segments, like a cuff in most cases, with normokinesia or hyperkinesia of basal and apical segments Inverse takotsubo cardiomyopathy, wall motion abnormality is reciprocal to apical type, hypokinesia or dyskinesia of basal segments, normokinesia or hyperkinesia of midventricular, anterior, antroseptal, and antroapikal segments of left ventricle Focal hypkinesia or dyskinesia of any segments of the left ventricle , commonly antroseptal wall

Pathophysiology



 
 
 
 
 
 
 
 
 
 
 
 
 
Stress Induced Cardiomyopathy
 
 
 
 
 
 
 
 
 
 
 
Microvascular/Thrombotic Injury
 
 
 
 
 
 
 
 
Cytokine Storm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pre-existing cardiovascular Disease
 
 
 
 
 
Acute Myocardial Injury Characterized by Abnormal Troponin
 
 
 
 
 
Viral Myocarditis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypoxemia
 
 
 
 
 
 
 
 
Hypotension +/- Shock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ventricular or atrial arrhythmias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Causes

Common causes of stress cardiomyopathy include:

Differentiating COVID-19-associated stress cardiomyopathy from other Diseases

  • For further information about the differential diagnosis, click here.
  • To view the differential diagnosis of COVID-19, click here.
Differentiating diagnosis Takotsubo cardiomyopathy STEMI
Stressful trigger Prominent stressful event (79%) 8%
Elevated troponin on admission 91% 37%
LVEF<40% Higher incidence of decreased LVEF at presentation (80%) 31%
Symptoms Chest pain (73%) Higher rate of chest pain (100%)
Sex Female Male
Age Older age (66 years old) Mean age 60 years old
Risk factors Lower incidence of HLP, smoking, diabetes mellitus HLP, smoking, diabetes mellitus
Coronary angiography Lower incidence of stenosis> 50% (15%) Stenosis> 50% in 100%
In-hospital mortality 1.3% 3.6%

Epidemiology and Demographics

Age

Gender


Race

Risk Factors




Screening

Natural History, Complications, and Prognosis

Diagnosis


Diagnostic Study of Choice

History and Symptoms

Symptoms of stress cardiomyopathy can mimic acute coronary syndrome. The most common presenting symptoms are:[12][16][13][18][23][17]

Physical Examination

Organ System Findings Suggestive Of
General appearance Patient may be anxious, ill-appearing or diaphoretic
Vital signs Cardiogenic shock
Cardiac Murmurs, S3, gallop rhythm, Displaced point of maximal impulse (PMI) Heart failure
Respiratory Rales, crackles Pulmonary edema

Laboratory Findings

Electrocardiogram

The ECG findings are largely the same of the regular stress cardiomyopathy, and are often confused with those of an acute anterior wall myocardial infarction.[12][18] Findings on ECG include:[12][16][13][14][18][23][17]

X-ray

Takotsubo refers to a ceramic pot used to trap octopuses in the Japanese language. The typical chest x-ray findings in patients with stress cardiomyopathy include a takotsubo-shaped heart, in which there is apical ballooning and narrowing of the proximal portion near the great vessels.

Echocardiography or Ultrasound

The following echocardiographic findings may be seen in patients with stress cardiomyopathy:[16][13][14][17]

CT scan

A cardiac CT scan can also help differentiate between stress cardiomyopathy and acute MI. Regional abnormalities in the wall motion of the heart, along with absence of coronary atherosclerosis support the diagnosis of stress cardiomyopathy over an acute MI.[17]

Chest CT scan may also show findings associated with COVID-19 and they can include:

  • Unilateral or bilateral pneumonia[27][28][29]
  • Mottling and ground-glass opacity
  • Focal or multifocal opacities
  • Consolidation
  • Septal thickening
  • Subpleural and lower lobe involvement more likely

MRI

Other findings on CMR include:[17][20]

Other Imaging Findings

Positron Emission Tomography (PET) Scan

In patients with stress cardiomyopathy, a PET scan may be done. Areas of hypokinesia or dyskinesia have reduced glucose utilization compared to normal regions.[38]

Coronary Angiography

Other Diagnostic Studies

Cardiac Catheterization

When patients with stress cardiomyopathy undergo cardiac catheterization, the following findings are usually reported:[16][18][14]

Myocardial Biopsy

Treatment

Medical Therapy

Treatment of Complications

The following interventions are performed if their associated complications arise:[15][16][18]

Surgery

  • Surgical intervention is not recommended for the management of COVID-19-associated stress cardiomyopathy.

Primary Prevention

  • There are no established measures for the primary prevention of COVID-19-associated stress cardiomyopathy if a patient has acquired COVID-19 infection.
  • Preventive measures should be taken to avoid COVID-19 infection.

Secondary Prevention

References

  1. Roca E, Lombardi C, Campana M, Vivaldi O, Bigni B, Bertozzi B; et al. (2020). "Takotsubo Syndrome Associated with COVID-19". Eur J Case Rep Intern Med. 7 (5): 001665. doi:10.12890/2020_001665. PMC 7213829 Check |pmc= value (help). PMID 32399453 Check |pmid= value (help).
  2. 2.0 2.1 Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF (September 2015). "Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy". N Engl J Med. 373 (10): 929–38. doi:10.1056/NEJMoa1406761. PMID 26332547.
  3. Tan T, Khoo B, Mills EG, Phylactou M, Patel B, Eng PC, Thurston L, Muzi B, Meeran K, Prevost AT, Comninos AN, Abbara A, Dhillo WS (August 2020). "Association between high serum total cortisol concentrations and mortality from COVID-19". Lancet Diabetes Endocrinol. 8 (8): 659–660. doi:10.1016/S2213-8587(20)30216-3. PMC 7302794 Check |pmc= value (help). PMID 32563278 Check |pmid= value (help).
  4. Pasqualetto MC, Secco E, Nizzetto M, Scevola M, Altafini L, Cester A; et al. (2020). "Stress Cardiomyopathy in COVID-19 Disease". Eur J Case Rep Intern Med. 7 (6): 001718. doi:10.12890/2020_001718. PMC 7279910 Check |pmc= value (help). PMID 32523926 Check |pmid= value (help).
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Jabri A, Kalra A, Kumar A, Alameh A, Adroja S, Bashir H; et al. (2020). "Incidence of Stress Cardiomyopathy During the Coronavirus Disease 2019 Pandemic". JAMA Netw Open. 3 (7): e2014780. doi:10.1001/jamanetworkopen.2020.14780. PMC 7348683 Check |pmc= value (help). PMID 32644140 Check |pmid= value (help).
  6. Hendren NS, Drazner MH, Bozkurt B, Cooper LT (2020). "Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome". Circulation. 141 (23): 1903–1914. doi:10.1161/CIRCULATIONAHA.120.047349. PMC 7314493 Check |pmc= value (help). PMID 32297796 Check |pmid= value (help).
  7. Beppu M, Terao T, Osawa T, Jentsch F (November 1975). "Photoaffinity labeling of concanavalin A. Preparation of a concanavalin A derivative with reduced valence". J Biochem. 78 (5): 1013–9. doi:10.1093/oxfordjournals.jbchem.a130978. PMID 2589.
  8. Singh K, Carson K, Shah R, Sawhney G, Singh B, Parsaik A, Gilutz H, Usmani Z, Horowitz J (April 2014). "Meta-analysis of clinical correlates of acute mortality in takotsubo cardiomyopathy". Am J Cardiol. 113 (8): 1420–8. doi:10.1016/j.amjcard.2014.01.419. PMID 24685327.
  9. Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D, De Cobelli F, Tresoldi M, Cappelletti AM, Basso C, Godino C, Esposito A (May 2020). "Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection". Eur Heart J. 41 (19): 1861–1862. doi:10.1093/eurheartj/ehaa286. PMC 7184339 Check |pmc= value (help). PMID 32267502 Check |pmid= value (help).
  10. Dabbagh MF, Aurora L, D'Souza P, Weinmann AJ, Bhargava P, Basir MB (July 2020). "Cardiac Tamponade Secondary to COVID-19". JACC Case Rep. 2 (9): 1326–1330. doi:10.1016/j.jaccas.2020.04.009. PMC 7177077 Check |pmc= value (help). PMID 32328588 Check |pmid= value (help).
  11. 11.0 11.1 Sharma K, Desai HD, Patoliya JV, Jadeja DM, Gadhiya D (January 2021). "Takotsubo Syndrome a Rare Entity in COVID-19: a Systemic Review-Focus on Biomarkers, Imaging, Treatment, and Outcome". SN Compr Clin Med: 1–11. doi:10.1007/s42399-021-00743-4. PMC 7799869 Check |pmc= value (help). PMID 33458567 Check |pmid= value (help).
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 Akashi YJ, Goldstein DS, Barbaro G, Ueyama T (2008). "Takotsubo cardiomyopathy: a new form of acute, reversible heart failure". Circulation. 118 (25): 2754–62. doi:10.1161/CIRCULATIONAHA.108.767012. PMC 4893309. PMID 19106400.
  13. 13.0 13.1 13.2 13.3 13.4 13.5 Prasad A, Lerman A, Rihal CS (2008). "Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction". Am. Heart J. 155 (3): 408–17. doi:10.1016/j.ahj.2007.11.008. PMID 18294473.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER (2009). "Clinical problem-solving. A change of heart". N. Engl. J. Med. 361 (10): 1010–6. doi:10.1056/NEJMcps0903023. PMID 19726776.
  15. 15.0 15.1 15.2 15.3 Omerovic E (2011). "How to think about stress-induced cardiomyopathy?--Think "out of the box"!". Scand. Cardiovasc. J. 45 (2): 67–71. doi:10.3109/14017431.2011.565794. PMID 21401402.
  16. 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 Brenner ZR, Powers J (2008). "Takotsubo cardiomyopathy". Heart Lung. 37 (1): 1–7. doi:10.1016/j.hrtlng.2006.12.003. PMID 18206521.
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 Efferth T, Banerjee M, Paul NW (2016). "Broken heart, tako-tsubo or stress cardiomyopathy? Metaphors, meanings and their medical impact". Int. J. Cardiol. doi:10.1016/j.ijcard.2016.12.129. PMID 28041712.
  18. 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS (2004). "Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction". Ann. Intern. Med. 141 (11): 858–65. PMID 15583228.
  19. 19.0 19.1 Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I (2001). "Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan". J. Am. Coll. Cardiol. 38 (1): 11–8. PMID 11451258.
  20. 20.0 20.1 20.2 20.3 Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ (2005). "Acute and reversible cardiomyopathy provoked by stress in women from the United States". Circulation. 111 (4): 472–9. doi:10.1161/01.CIR.0000153801.51470.EB. PMID 15687136.
  21. 21.0 21.1 Desmet WJ, Adriaenssens BF, Dens JA (2003). "Apical ballooning of the left ventricle: first series in white patients". Heart. 89 (9): 1027–31. PMC 1767823. PMID 12923018.
  22. Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H (2015). "Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database". Cardiology. 132 (2): 131–136. doi:10.1159/000430782. PMID 26159108.
  23. 23.0 23.1 Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschöpe C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Böhm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Lüscher TF (2015). "Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy". N. Engl. J. Med. 373 (10): 929–38. doi:10.1056/NEJMoa1406761. PMID 26332547.
  24. Y-Hassan S, Yamasaki K (2013). "History of takotsubo syndrome: is the syndrome really described as a disease entity first in 1990? Some inaccuracies". Int. J. Cardiol. 166 (3): 736–7. doi:10.1016/j.ijcard.2012.09.183. PMID 23073280.
  25. Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ (2005). "Acute and reversible cardiomyopathy provoked by stress in women from the United States". Circulation. 111 (4): 472–9. doi:10.1161/01.CIR.0000153801.51470.EB. PMID 15687136.
  26. Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H (2015). "Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database". Cardiology. 132 (2): 131–136. doi:10.1159/000430782. PMID 26159108.
  27. Paul NS, Roberts H, Butany J, Chung T, Gold W, Mehta S, Konen E, Rao A, Provost Y, Hong HH, Zelovitsky L, Weisbrod GL (2004). "Radiologic pattern of disease in patients with severe acute respiratory syndrome: the Toronto experience". Radiographics. 24 (2): 553–63. doi:10.1148/rg.242035193. PMID 15026600.
  28. Ajlan AM, Ahyad RA, Jamjoom LG, Alharthy A, Madani TA (October 2014). "Middle East respiratory syndrome coronavirus (MERS-CoV) infection: chest CT findings". AJR Am J Roentgenol. 203 (4): 782–7. doi:10.2214/AJR.14.13021. PMID 24918624.
  29. Chen, Nanshan; Zhou, Min; Dong, Xuan; Qu, Jieming; Gong, Fengyun; Han, Yang; Qiu, Yang; Wang, Jingli; Liu, Ying; Wei, Yuan; Xia, Jia'an; Yu, Ting; Zhang, Xinxin; Zhang, Li (2020). "Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study". The Lancet. doi:10.1016/S0140-6736(20)30211-7. ISSN 0140-6736.
  30. Haghi D, Fluechter S, Suselbeck T, Kaden JJ, Borggrefe M, Papavassiliu T (2007). "Cardiovascular magnetic resonance findings in typical versus atypical forms of the acute apical ballooning syndrome (Takotsubo cardiomyopathy)". Int. J. Cardiol. 120 (2): 205–11. doi:10.1016/j.ijcard.2006.09.019. PMID 17175045.
  31. 31.0 31.1 Mitchell JH, Hadden TB, Wilson JM, Achari A, Muthupillai R, Flamm SD (2007). "Clinical features and usefulness of cardiac magnetic resonance imaging in assessing myocardial viability and prognosis in Takotsubo cardiomyopathy (transient left ventricular apical ballooning syndrome)". Am. J. Cardiol. 100 (2): 296–301. doi:10.1016/j.amjcard.2007.02.091. PMID 17631086.
  32. Deetjen AG, Conradi G, Mollmann S, Rad A, Hamm CW, Dill T (2006). "Value of gadolinium-enhanced magnetic resonance imaging in patients with Tako-Tsubo-like left ventricular dysfunction". J Cardiovasc Magn Reson. 8 (2): 367–72. PMID 16669180.
  33. Abe Y, Kondo M, Matsuoka R, Araki M, Dohyama K, Tanio H (2003). "Assessment of clinical features in transient left ventricular apical ballooning". J. Am. Coll. Cardiol. 41 (5): 737–42. PMID 12628715.
  34. Dec GW (2005). "Recognition of the apical ballooning syndrome in the United States". Circulation. 111 (4): 388–90. doi:10.1161/01.CIR.0000155234.69439.E4. PMID 15687123.
  35. Handy AD, Prasad A, Olson TM (2009). "Investigating genetic variation of adrenergic receptors in familial stress cardiomyopathy (apical ballooning syndrome)". J Cardiol. 54 (3): 516–7. doi:10.1016/j.jjcc.2009.08.008. PMID 19944334.
  36. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, Francone M, Desch S, Gutberlet M, Strohm O, Schuler G, Schulz-Menger J, Thiele H, Friedrich MG (2011). "Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy". JAMA. 306 (3): 277–86. doi:10.1001/jama.2011.992. PMID 21771988.
  37. Eitel I, Behrendt F, Schindler K, Kivelitz D, Gutberlet M, Schuler G, Thiele H (2008). "Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging". Eur. Heart J. 29 (21): 2651–9. doi:10.1093/eurheartj/ehn433. PMID 18820322.
  38. Testa M, Feola M (2014). "Usefulness of myocardial positron emission tomography/nuclear imaging in Takotsubo cardiomyopathy". World J Radiol. 6 (7): 502–6. doi:10.4329/wjr.v6.i7.502. PMC 4109102. PMID 25071891.


Template:WikiDoc Sources