Intracranial aneurysms: Difference between revisions

Jump to navigation Jump to search
Line 26: Line 26:


The mechanisms by which these changes occur are not well understood but have been attributed in part to atherosclerotic changes. This weakening in the vessel wall sets the stage for hemodynamic forces to cause saccular dilation (2). Reduced peripheral resistance in the intracranial circulation, along with more rapid blood flow, may be associated with an augmented pulse pressure, which can lead to saccular dilation (1). Recent studies have demonstrated that hemodynamic stress in vascular walls can result in alterations in extracellular matrix organization (3). Turbulent flow in aneurysmal sacs damages the endothelium and results in laminar necrosis of the wall and expansion of the aneurysm. If a small aneurysm does not rupture, partial healing occurs through mural thrombus formation followed by organization of the thrombus with scarring of the wall, invasion of fibroblasts, collagen formation, platelet aggregation, and deposition of fibrous material. Repeat hemorrhages can occur in the wall, leading to repetitive cycles of abnormal healing and aneurysm growth. Giant aneurysms are believed to form by these mechanisms (4).
The mechanisms by which these changes occur are not well understood but have been attributed in part to atherosclerotic changes. This weakening in the vessel wall sets the stage for hemodynamic forces to cause saccular dilation (2). Reduced peripheral resistance in the intracranial circulation, along with more rapid blood flow, may be associated with an augmented pulse pressure, which can lead to saccular dilation (1). Recent studies have demonstrated that hemodynamic stress in vascular walls can result in alterations in extracellular matrix organization (3). Turbulent flow in aneurysmal sacs damages the endothelium and results in laminar necrosis of the wall and expansion of the aneurysm. If a small aneurysm does not rupture, partial healing occurs through mural thrombus formation followed by organization of the thrombus with scarring of the wall, invasion of fibroblasts, collagen formation, platelet aggregation, and deposition of fibrous material. Repeat hemorrhages can occur in the wall, leading to repetitive cycles of abnormal healing and aneurysm growth. Giant aneurysms are believed to form by these mechanisms (4).
Several risk factors and associated conditions have been linked with intracranial aneurysm growth and rupture. Smoking has been associated with larger berry aneurysm size and multiple aneurysms (5-7). Alcohol abuse has been associated with aneurysm rupture (7). The role of hypertension in aneurysm formation has been controversial in the literature. Hypertension as a direct cause of aneurysms has never been established; however, it is believed that hypertension may exacerbate a rupture when it occurs and may contribute to aneurysm growth. Several conditions have been associated with a greater propensity for berry aneurysms. These conditions include coarctation of the aorta, polycystic kidney disease, and various connective tissue disorders such as Ehlers-Danlos syndrome (1).


    
    

Revision as of 03:33, 22 January 2009

Intracranial aneurysms

WikiDoc Resources for Intracranial aneurysms

Articles

Most recent articles on Intracranial aneurysms

Most cited articles on Intracranial aneurysms

Review articles on Intracranial aneurysms

Articles on Intracranial aneurysms in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Intracranial aneurysms

Images of Intracranial aneurysms

Photos of Intracranial aneurysms

Podcasts & MP3s on Intracranial aneurysms

Videos on Intracranial aneurysms

Evidence Based Medicine

Cochrane Collaboration on Intracranial aneurysms

Bandolier on Intracranial aneurysms

TRIP on Intracranial aneurysms

Clinical Trials

Ongoing Trials on Intracranial aneurysms at Clinical Trials.gov

Trial results on Intracranial aneurysms

Clinical Trials on Intracranial aneurysms at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Intracranial aneurysms

NICE Guidance on Intracranial aneurysms

NHS PRODIGY Guidance

FDA on Intracranial aneurysms

CDC on Intracranial aneurysms

Books

Books on Intracranial aneurysms

News

Intracranial aneurysms in the news

Be alerted to news on Intracranial aneurysms

News trends on Intracranial aneurysms

Commentary

Blogs on Intracranial aneurysms

Definitions

Definitions of Intracranial aneurysms

Patient Resources / Community

Patient resources on Intracranial aneurysms

Discussion groups on Intracranial aneurysms

Patient Handouts on Intracranial aneurysms

Directions to Hospitals Treating Intracranial aneurysms

Risk calculators and risk factors for Intracranial aneurysms

Healthcare Provider Resources

Symptoms of Intracranial aneurysms

Causes & Risk Factors for Intracranial aneurysms

Diagnostic studies for Intracranial aneurysms

Treatment of Intracranial aneurysms

Continuing Medical Education (CME)

CME Programs on Intracranial aneurysms

International

Intracranial aneurysms en Espanol

Intracranial aneurysms en Francais

Business

Intracranial aneurysms in the Marketplace

Patents on Intracranial aneurysms

Experimental / Informatics

List of terms related to Intracranial aneurysms

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [1] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Overview

The catastrophic potential of intracranial aneurysms, arteriovenous malformations (AVMs), and arteriovenous fistulas (AVFs) and the complexity of their pathogenesis have made them the subject of intense interest and study over the past 80 years. Advances in the ability to treat these lesions have been paralleled by rigorous research on their pathophysiology. An increase in the longevity of the population over the past century and improvements in imaging techniques contribute to more frequent encounters with these lesions by neurosurgeons and interventionists. Despite numerous clinical and laboratory research projects studying the pathophysiology of these lesions, much remains to be learned. In this chapter, we will discuss the pathophysiology of various types of intracranial aneurysms, as well as AVMs and AVFs.

Berry Aneurysms

Berry aneurysms arise at vessel bifurcations or curves. These aneurysms occur mostly between the ages of 40 and 70 years. The pathogenesis of berry aneurysms is multifactorial. Compelling evidence suggests that hemodynamic factors as well as degenerative histological changes in the parent vessel wall contribute to aneurysm formation. Early in the process of berry aneurysm formation, destruction and eventual loss of the media occur (1). The internal elastic layer becomes disrupted and is eventually lost.

The mechanisms by which these changes occur are not well understood but have been attributed in part to atherosclerotic changes. This weakening in the vessel wall sets the stage for hemodynamic forces to cause saccular dilation (2). Reduced peripheral resistance in the intracranial circulation, along with more rapid blood flow, may be associated with an augmented pulse pressure, which can lead to saccular dilation (1). Recent studies have demonstrated that hemodynamic stress in vascular walls can result in alterations in extracellular matrix organization (3). Turbulent flow in aneurysmal sacs damages the endothelium and results in laminar necrosis of the wall and expansion of the aneurysm. If a small aneurysm does not rupture, partial healing occurs through mural thrombus formation followed by organization of the thrombus with scarring of the wall, invasion of fibroblasts, collagen formation, platelet aggregation, and deposition of fibrous material. Repeat hemorrhages can occur in the wall, leading to repetitive cycles of abnormal healing and aneurysm growth. Giant aneurysms are believed to form by these mechanisms (4).

Several risk factors and associated conditions have been linked with intracranial aneurysm growth and rupture. Smoking has been associated with larger berry aneurysm size and multiple aneurysms (5-7). Alcohol abuse has been associated with aneurysm rupture (7). The role of hypertension in aneurysm formation has been controversial in the literature. Hypertension as a direct cause of aneurysms has never been established; however, it is believed that hypertension may exacerbate a rupture when it occurs and may contribute to aneurysm growth. Several conditions have been associated with a greater propensity for berry aneurysms. These conditions include coarctation of the aorta, polycystic kidney disease, and various connective tissue disorders such as Ehlers-Danlos syndrome (1).


Template:SIB


Template:WikiDoc Sources