Atrial septal defect percutaneous closure: Difference between revisions
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
Secundum defects are assessed via [[Atrial septal defect echocardiography|echocardiographic monitoring]] to determine the anatomic viability of percutaneous closure. The ideal secundum defect is less than 30mm in diameter with an accompanying rim of tissue around the defect of at least 5mm. This rim of tissue serves to prevent impingement upon the [[superior vena cava|superior vena cava (SVC)]], [[inferior vena cava|inferior vena cava (IVC)]], as well as the [[tricuspid valve|tricuspid]] or [[mitral valve|mitral]] valves.<ref name="pmid1389707">{{cite journal| author=Ferreira SM, Ho SY, Anderson RH| title=Morphological study of defects of the atrial septum within the oval fossa: implications for transcatheter closure of left-to-right shunt. | journal=Br Heart J | year= 1992 | volume= 67 | issue= 4 | pages= 316-20 | pmid=1389707 | doi= | pmc=PMC1024841 | url= }} </ref> | Secundum defects are assessed via [[Atrial septal defect echocardiography|echocardiographic monitoring]] to determine the anatomic viability of percutaneous closure. The ideal secundum defect is less than 30mm in diameter with an accompanying rim of tissue around the defect of at least 5mm. This rim of tissue serves to prevent impingement upon the [[superior vena cava|superior vena cava (SVC)]], [[inferior vena cava|inferior vena cava (IVC)]], as well as the [[tricuspid valve|tricuspid]] or [[mitral valve|mitral]] valves.<ref name="pmid1389707">{{cite journal| author=Ferreira SM, Ho SY, Anderson RH| title=Morphological study of defects of the atrial septum within the oval fossa: implications for transcatheter closure of left-to-right shunt. | journal=Br Heart J | year= 1992 | volume= 67 | issue= 4 | pages= 316-20 | pmid=1389707 | doi= | pmc=PMC1024841 | url= }} </ref> | ||
== | ==[[Atrial septal defect percutaneous closure benefits|Benefits of percutaneous closure]]== | ||
==[[Atrial septal defect percutaneous closure complications|Complications of percutaneous closure]]== | |||
==References== | ==References== |
Revision as of 16:42, 6 July 2011
Atrial Septal Defect Microchapters | |
Treatment | |
---|---|
Surgery | |
| |
Special Scenarios | |
Case Studies | |
Atrial septal defect percutaneous closure On the Web | |
American Roentgen Ray Society Images of Atrial septal defect percutaneous closure | |
Risk calculators and risk factors for Atrial septal defect percutaneous closure | |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Percutaneous closure
Percutaneous transcatheter closure is current only indicated for the closure of ostium secundum atrial septal defects. It should not be used in patients with sinus venosus, primum or patent foramen ovale atrial septal defects. In patients with a secundum defect, there must be a sufficient rim of tissue around the septal defect.
The Food and Drug Administration has authorized the following percutaenous transcatheters for usage:[1]
- Amplatzer septal occluder
- CardioSEAL
- HELEX septal occluder
- Sideris patch
The Ampltazer septal occluder (ASO) is the most commonly used device as it allows closure of large cavities, is easy to implant, and boasts high success rates. As an instrument, the ASO consists of two self-expandable round discs connected to each other with a 4-mm waist, made up of 0.004–0.005´´ nitinol wire mesh filled with Dacron fabric. Implantation of the device is relatively easy. The prevalence of residual defect is low. The disadvantages are a thick profile of the device and concern related to a large amount of nitinol (a nickel-titanium compound) in the device and consequent potential for nickel toxicity.
Evaluation
Prior to percutaneous closure, ostium secundum atrial septal defect patients undergo antiplatelet therapy such as aspirin or clopidogrel for a minimum of six months. This antiplatelet therapy protects patients against thrombus formation.
Secundum defects are assessed via echocardiographic monitoring to determine the anatomic viability of percutaneous closure. The ideal secundum defect is less than 30mm in diameter with an accompanying rim of tissue around the defect of at least 5mm. This rim of tissue serves to prevent impingement upon the superior vena cava (SVC), inferior vena cava (IVC), as well as the tricuspid or mitral valves.[2]
Benefits of percutaneous closure
Complications of percutaneous closure
References
- ↑ Schwetz BA (2002). "From the Food and Drug Administration". JAMA. 287 (5): 578. PMID 11829678.
- ↑ Ferreira SM, Ho SY, Anderson RH (1992). "Morphological study of defects of the atrial septum within the oval fossa: implications for transcatheter closure of left-to-right shunt". Br Heart J. 67 (4): 316–20. PMC 1024841. PMID 1389707.