Metabolic syndrome pathophysiology: Difference between revisions
Created page with "{{Metabolic syndrome}} {{CMG}}; '''Associate Editor(s)-In-Chief:''' Priyamvada Singh, M.B.B.S. [mailto:psingh@perfuse.org] ==Overview== ==Pathophysiology==..." |
No edit summary |
||
Line 8: | Line 8: | ||
Commonly, there is development of [[visceral fat]] followed by the [[adipocyte]]s (fat [[Cell (biology)|cell]]s) of the visceral fat increasing [[blood plasma|plasma]] levels of TNFα and altering levels of a number of other substances (e.g., adiponectin, resistin, PAI-1). TNFα has been shown to not only cause the production of inflammatory [[cytokine]]s, but may also trigger cell signalling by interaction with a TNFα [[Receptor (biochemistry)|receptor]] that may lead to insulin resistance. An experiment with rats that were fed a diet one-third of which was [[sucrose]] has been proposed as a model for the development of the metabolic syndrome. The sucrose first elevated blood levels of [[triglyceride]]s, which induced [[visceral]] fat and ultimately resulted in insulin resistance <ref>{{cite journal | author=Fukuchi S, Hamaguchi K, Seike M, Himeno K, Sakata T, Yoshimatsu H. | title=Role of Fatty Acid Composition in the Development of Metabolic Disorders in Sucrose-Induced Obese Rats | journal=Exp Biol Med | year=2004 | volume=229 | issue=6 | pages= 486–493 | url=http://www.ebmonline.org/cgi/content/full/229/6/486 | id=PMID 15169967}}</ref>. The progression from visceral fat to increased TNFα to insulin resistance has some parallels to human development of metabolic syndrome. | Commonly, there is development of [[visceral fat]] followed by the [[adipocyte]]s (fat [[Cell (biology)|cell]]s) of the visceral fat increasing [[blood plasma|plasma]] levels of TNFα and altering levels of a number of other substances (e.g., adiponectin, resistin, PAI-1). TNFα has been shown to not only cause the production of inflammatory [[cytokine]]s, but may also trigger cell signalling by interaction with a TNFα [[Receptor (biochemistry)|receptor]] that may lead to insulin resistance. An experiment with rats that were fed a diet one-third of which was [[sucrose]] has been proposed as a model for the development of the metabolic syndrome. The sucrose first elevated blood levels of [[triglyceride]]s, which induced [[visceral]] fat and ultimately resulted in insulin resistance <ref>{{cite journal | author=Fukuchi S, Hamaguchi K, Seike M, Himeno K, Sakata T, Yoshimatsu H. | title=Role of Fatty Acid Composition in the Development of Metabolic Disorders in Sucrose-Induced Obese Rats | journal=Exp Biol Med | year=2004 | volume=229 | issue=6 | pages= 486–493 | url=http://www.ebmonline.org/cgi/content/full/229/6/486 | id=PMID 15169967}}</ref>. The progression from visceral fat to increased TNFα to insulin resistance has some parallels to human development of metabolic syndrome. | ||
==Associated Conditions== | |||
*[[Polycystic ovarian syndrome]] | |||
*[[Hemochromatosis]](iron overload) | |||
==See also== | ==See also== |
Revision as of 18:21, 27 September 2011
Metabolic syndrome Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Metabolic syndrome pathophysiology On the Web |
American Roentgen Ray Society Images of Metabolic syndrome pathophysiology |
Risk calculators and risk factors for Metabolic syndrome pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.B.B.S. [2]
Overview
Pathophysiology
The cause of the metabolic syndrome is unknown. The pathophysiology is extremely complex and has only been partially elucidated. Most patients are older, obese, sedentary, and have a degree of insulin resistance. The most important factors in order are 1) aging, 2) genetics and 3) lifestyle (i.e., decreased physical activity and excess caloric intake). There is debate regarding whether obesity or insulin resistance is the cause of the metabolic syndrome or if it is a by-product of a more far-reaching metabolic derangement. Systemic inflammation: a number of inflammatory markers (including C-reactive protein) are often increased, as are fibrinogen, interleukin 6 (IL−6), Tumor necrosis factor-alpha (TNFα) and others. Some have pointed to oxidative stress due to a variety of causes including dietary fructose mediated increased uric acid levels.[1][2][3]
Commonly, there is development of visceral fat followed by the adipocytes (fat cells) of the visceral fat increasing plasma levels of TNFα and altering levels of a number of other substances (e.g., adiponectin, resistin, PAI-1). TNFα has been shown to not only cause the production of inflammatory cytokines, but may also trigger cell signalling by interaction with a TNFα receptor that may lead to insulin resistance. An experiment with rats that were fed a diet one-third of which was sucrose has been proposed as a model for the development of the metabolic syndrome. The sucrose first elevated blood levels of triglycerides, which induced visceral fat and ultimately resulted in insulin resistance [4]. The progression from visceral fat to increased TNFα to insulin resistance has some parallels to human development of metabolic syndrome.
Associated Conditions
- Polycystic ovarian syndrome
- Hemochromatosis(iron overload)
See also
References
- ↑ Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006). "A causal role for uric acid in fructose-induced metabolic syndrome". Am J Phys Renal Phys. 290 (3): F625&ndash, F631. PMID 16234313.
- ↑ Hallfrisch J (1990). "Metabolic effects of dietary fructose". FASEB J. 4 (9): 2652&ndash, 2660. PMID 2189777.
- ↑ Reiser S, Powell AS, Scholfield DJ, Panda P, Ellwood KC, Canary JJ (1989). "Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch". Am J Clin Nutr. 49 (5): 832&ndash, 839. PMID 2497634.
- ↑ Fukuchi S, Hamaguchi K, Seike M, Himeno K, Sakata T, Yoshimatsu H. (2004). "Role of Fatty Acid Composition in the Development of Metabolic Disorders in Sucrose-Induced Obese Rats". Exp Biol Med. 229 (6): 486&ndash, 493. PMID 15169967.