Spinal muscular atrophy treatment: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Spinal Muscular Atrophy}} | {{Spinal Muscular Atrophy}} | ||
'''Editors-in-Chief:''' [[C. Michael Gibson, M.S., M.D.]]; [[Priyamvada Singh]], [[MBBS]] | '''Editors-in-Chief:''' [[C. Michael Gibson, M.S., M.D.]]; [[Priyamvada Singh]], [[MBBS]] | ||
==Overview== | |||
The course of SMA is directly related to the severity of weakness. Infants with the severe form of SMA frequently succumb to respiratory disease due to weakness of the muscles that support breathing. Children with milder forms of SMA naturally live much longer although they may need extensive medical support, especially those at the more severe end of the spectrum. | The course of SMA is directly related to the severity of weakness. Infants with the severe form of SMA frequently succumb to respiratory disease due to weakness of the muscles that support breathing. Children with milder forms of SMA naturally live much longer although they may need extensive medical support, especially those at the more severe end of the spectrum. | ||
Although gene replacement strategies are being tested in animals, current treatment for SMA consists of prevention and management of the secondary effect of chronic motor unit loss. It is likely that gene replacement for SMA will require many more years of investigation before it can be applied to humans. Due to [[molecular biology]], there is a better understanding of SMA. The disease is caused by deficiency of SMN (survival motor neuron) protein, and therefore approaches to developing treatment include searching for drugs that increase SMN levels, enhance residual SMN function, or compensate for its loss. | Although gene replacement strategies are being tested in animals, current treatment for SMA consists of prevention and management of the secondary effect of chronic motor unit loss. It is likely that gene replacement for SMA will require many more years of investigation before it can be applied to humans. Due to [[molecular biology]], there is a better understanding of SMA. The disease is caused by deficiency of SMN (survival motor neuron) protein, and therefore approaches to developing treatment include searching for drugs that increase SMN levels, enhance residual SMN function, or compensate for its loss. | ||
Much can be done for SMA patients in terms of medical and in particular respiratory, nutritional and rehabilitation care. However, there is currently no drug known to alter the course of SMA. Significant progress has been made in preclincial research towards an effective treatment. Several drugs have been identified in laboratory experiments that hold promise for patients. To evaluate if these drugs benefit SMA patients, clinical trials are needed. In a clinical trial a new medication is tested while the patients are carefully monitored for their safety and for any possible drug effects, positive or negative. | Much can be done for SMA patients in terms of medical and in particular respiratory, nutritional and rehabilitation care. However, there is currently no drug known to alter the course of SMA. Significant progress has been made in preclincial research towards an effective treatment. Several drugs have been identified in laboratory experiments that hold promise for patients. To evaluate if these drugs benefit SMA patients, clinical trials are needed. In a clinical trial a new medication is tested while the patients are carefully monitored for their safety and for any possible drug effects, positive or negative. | ||
Some drugs under clinical investigation for the treatment of SMA: | Some drugs under clinical investigation for the treatment of SMA: |
Latest revision as of 14:41, 28 January 2012
Spinal Muscular Atrophy Microchapters |
Spinal muscular atrophy treatment Resources |
---|
Ongoing Trials on Spinal muscular atrophy treatment at Clinical Trials.gov |
US National Guidelines Clearinghouse on Spinal muscular atrophy treatment |
Directions to Hospitals Treating Spinal muscular atrophy treatment |
Risk calculators and risk factors for Spinal muscular atrophy treatment |
Editors-in-Chief: C. Michael Gibson, M.S., M.D.; Priyamvada Singh, MBBS
Overview
The course of SMA is directly related to the severity of weakness. Infants with the severe form of SMA frequently succumb to respiratory disease due to weakness of the muscles that support breathing. Children with milder forms of SMA naturally live much longer although they may need extensive medical support, especially those at the more severe end of the spectrum. Although gene replacement strategies are being tested in animals, current treatment for SMA consists of prevention and management of the secondary effect of chronic motor unit loss. It is likely that gene replacement for SMA will require many more years of investigation before it can be applied to humans. Due to molecular biology, there is a better understanding of SMA. The disease is caused by deficiency of SMN (survival motor neuron) protein, and therefore approaches to developing treatment include searching for drugs that increase SMN levels, enhance residual SMN function, or compensate for its loss. Much can be done for SMA patients in terms of medical and in particular respiratory, nutritional and rehabilitation care. However, there is currently no drug known to alter the course of SMA. Significant progress has been made in preclincial research towards an effective treatment. Several drugs have been identified in laboratory experiments that hold promise for patients. To evaluate if these drugs benefit SMA patients, clinical trials are needed. In a clinical trial a new medication is tested while the patients are carefully monitored for their safety and for any possible drug effects, positive or negative.
Some drugs under clinical investigation for the treatment of SMA: