Pulmonary embolism D-dimer: Difference between revisions

Jump to navigation Jump to search
Lakshmi Gopalakrishnan (talk | contribs)
No edit summary
Lakshmi Gopalakrishnan (talk | contribs)
No edit summary
Line 3: Line 3:


==Overview==
==Overview==
 
[[D-dimer]] is a [[fibrin degradation product]], that is elevated in the plasma after an acute blood clot. Majority of the patients with pulmonary embolism have some degree of endogenous [[fibrinolysis]] with subsequent elevation of [[D-dimer]]. Therefore, the [[negative predictive value]] of D-dimer for the diagnosis of pulmonary embolism is very high ''(91-94% when done by ELISA)''. Despite this specificity, a wide range of other diseases are associated with mild degrees of [[fibrinolysis]] which may falsely elevate [[D-dimer]]; thereby, decreasing its specificity for the diagnosis of PE. Such disease states include: 
:*[[Pneumonia]]
:*[[Congestive heart failure|Congestive heart failure (CHF)]]
:*[[Myocardial infarction|Myocardial infarction (MI)]]
:*[[Malignancy]]


==D-dimers==
==D-dimers==
This is formed by the degradation of fibrin clot. Almost all patients with PE have some endogenous fibrinolysis, and therefore have elevated levels of D-dimer.
* The negative predictive value (when done by ELISA) is 91% – 94% .
* Many other diseases are associated with a mild degree of fibrinolysis, and hence an elevated D-dimer is not specific for pulmonary embolism. Disease with elevated levels of D-dimer are:
**[[Pneumonia]]
**[[Congestive heart failure|Congestive heart failure (CHF)]]
**[[Myocardial infarction|Myocardial infarction (MI)]]
**[[Malignancy]]
D-Dimer levels are elevated in other medical conditions such as:
D-Dimer levels are elevated in other medical conditions such as:
# Pregnancy
# Pregnancy

Revision as of 15:20, 3 May 2012

Pulmonary Embolism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pulmonary Embolism from other Diseases

Epidemiology and Demographics

Risk Factors

Triggers

Natural History, Complications and Prognosis

Diagnosis

Diagnostic criteria

Assessment of Clinical Probability and Risk Scores

Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores

History and Symptoms

Physical Examination

Laboratory Findings

Arterial Blood Gas Analysis

D-dimer

Biomarkers

Electrocardiogram

Chest X Ray

Ventilation/Perfusion Scan

Echocardiography

Compression Ultrasonography

CT

MRI

Treatment

Treatment approach

Medical Therapy

IVC Filter

Pulmonary Embolectomy

Pulmonary Thromboendarterectomy

Discharge Care and Long Term Treatment

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Follow-Up

Support group

Special Scenario

Pregnancy

Cancer

Trials

Landmark Trials

Case Studies

Case #1

Pulmonary embolism D-dimer On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pulmonary embolism D-dimer

CDC on Pulmonary embolism D-dimer

Pulmonary embolism D-dimer in the news

Blogs on Pulmonary embolism D-dimer

Directions to Hospitals Treating Pulmonary embolism D-dimer

Risk calculators and risk factors for Pulmonary embolism D-dimer

Editor(s)-In-Chief: The APEX Trial Investigators, C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Overview

D-dimer is a fibrin degradation product, that is elevated in the plasma after an acute blood clot. Majority of the patients with pulmonary embolism have some degree of endogenous fibrinolysis with subsequent elevation of D-dimer. Therefore, the negative predictive value of D-dimer for the diagnosis of pulmonary embolism is very high (91-94% when done by ELISA). Despite this specificity, a wide range of other diseases are associated with mild degrees of fibrinolysis which may falsely elevate D-dimer; thereby, decreasing its specificity for the diagnosis of PE. Such disease states include:

D-dimers

D-Dimer levels are elevated in other medical conditions such as:

  1. Pregnancy
  2. After surgery
  3. Hospitalized patient.[1] Thus, most hospitalized patients should not undergo D-dimer testing if PE is suspected.[2]

Patients who are hemodynamically stable, but have a high clinical probability or those having a high d-dimer level should undergo multidetector CT.[3] The following table depicts the incidences of thromboembolic events in hemodynamicaly stable patients.

Condition Incidence of thromboembolic event (%)
Patients not receiving anticoagulation and with negative CT findings. 1.5%[4][3]
Patients with High d-dimer level 1.5%
Patients with Normal d-dimer level 0.5%[4]

In low-to-moderate suspicion of PE, a normal D-dimer level (shown in a blood test) is enough to exclude the possibility of thrombotic PE.[5] In patients with High clinical probability, the use of the d-dimer assay is of limited value.[6]

The following flowchart summarize the role of D-dimer:

 
 
 
Patients with suspection of Pulmonary embolism
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clinically Low or Moderate
 
 
 
 
Clinically High
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D-Dimer Positive
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D-Dimer Negative
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No treatment
 
Further Tests
 
Further Tests


A new D-Dimer (DDMR) analyzer has shown to have higher accuracy in excluding patients with non-high clinical pre-test probability.[7]

ESC Guideline Recommendations [8]

Suspected Non High-risk PE Patients

Class I

1. Plasma D-dimer measurement is recommended in emergency department patients to reduce the need for unnecessary imaging and irradiation, preferably using a highly sensitive assay. (Level of Evidence: A)

Low clinical probability

Class I

1. Normal D-dimer level using either a highly or moderately sensitive assay excludes pulmonary embolism. (Level of Evidence: A)

Intermediate clinical probability

Class I

1. Normal D-dimer level using a highly sensitive assay excludes pulmonary embolism. (Level of Evidence: A)

Class IIa

1. Further testing should be considered if D-dimer level is normal when using a less sensitive assay. (Level of Evidence: B)

High clinical probability

Class III

1. D-dimer measurement is not recommended in high clinical probability patients as a normal result does not safely exclude pulmonary embolism even when using a highly sensitive assay. (Level of Evidence: C)

Guideline Resources

Guidelines on the diagnosis and management of acute pulmonary embolism. The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology[8]

References

  1. Bruinstroop E, van de Ree MA, Huisman MV (2009). "The use of D-dimer in specific clinical conditions: a narrative review". Eur J Intern Med. 20 (5): 441–6. doi:10.1016/j.ejim.2008.12.004. PMID 19712840.
  2. Agnelli G, Becattini C (2010). "Acute pulmonary embolism". N Engl J Med. 363 (3): 266–74. doi:10.1056/NEJMra0907731. PMID 20592294.
  3. 3.0 3.1 van Belle A, Büller HR, Huisman MV, Huisman PM, Kaasjager K, Kamphuisen PW; et al. (2006). "Effectiveness of managing suspected pulmonary embolism using an algorithm combining clinical probability, D-dimer testing, and computed tomography". JAMA. 295 (2): 172–9. doi:10.1001/jama.295.2.172. PMID 16403929.
  4. 4.0 4.1 Perrier A, Roy PM, Sanchez O, Le Gal G, Meyer G, Gourdier AL; et al. (2005). "Multidetector-row computed tomography in suspected pulmonary embolism". N Engl J Med. 352 (17): 1760–8. doi:10.1056/NEJMoa042905. PMID 15858185. in: J Fam Pract. 2005 Aug;54(8):653, 657
  5. Bounameaux H, de Moerloose P, Perrier A, Reber G (1994). "Plasma measurement of D-dimer as diagnostic aid in suspected venous thromboembolism: an overview". Thromb. Haemost. 71 (1): 1–6. PMID 8165626.
  6. Gupta RT, Kakarla RK, Kirshenbaum KJ, Tapson VF (2009). "D-dimers and efficacy of clinical risk estimation algorithms: sensitivity in evaluation of acute pulmonary embolism". AJR Am J Roentgenol. 193 (2): 425–30. doi:10.2214/AJR.08.2186. PMID 19620439.
  7. Gosselin RC, Wu JR, Kottke-Marchant K, Peetz D, Christie DJ, Muth H; et al. (2012). "Evaluation of the Stratus® CS Acute Care™ D-dimer assay (DDMR) using the Stratus® CS STAT Fluorometric Analyzer: A prospective multisite study for exclusion of pulmonary embolism and deep vein thrombosis". Thromb Res. doi:10.1016/j.thromres.2011.12.015. PMID 22245223.
  8. 8.0 8.1 Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP (2008). "Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur. Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870. Retrieved 2011-12-07. Unknown parameter |month= ignored (help)

Template:WH Template:WS