Cardiogenic shock: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
{{CMG}} | {{CMG}} | ||
==Overview== | ==[[Cardiogenic shock overview|Overview]]== | ||
==[[Cardiogenic shock historical perspective|Historical Perspective]]== | |||
== | ==[[Cardiogenic shock classification|Classification]]== | ||
Cardiogenic shock | |||
==[[Cardiogenic shock pathophysiology|Pathophysiology]]== | |||
==[[Cardiogenic shock causes|Causes]]== | |||
==[[Cardiogenic shock differential diagnosis|Differentiating Cardiogenic shock from other Diseases]]== | |||
Cardiogenic shock | |||
== | |||
==Epidemiology and demographics of cardiogenic shock== | ==Epidemiology and demographics of cardiogenic shock== |
Revision as of 15:10, 22 August 2012
Cardiogenic Shock Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Cardiogenic shock On the Web |
American Roentgen Ray Society Images of Cardiogenic shock |
For patient information click here
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Historical Perspective
Classification
Pathophysiology
Causes
Differentiating Cardiogenic shock from other Diseases
Epidemiology and demographics of cardiogenic shock
The incidence of cardiogenic shock among patients with acute MI is approximately 5% to 10% [1][2]
Because atherosclerosis and myocardial infarction are both more frequent among men, the number of men developing cardiogenic shock exceeds that of women. However, because women present with acute myocardial infarction at a later age than men, and because they may have more multivessel disease when they do present at a later age, a greater proportion of women with acute MI develop cardiogenic shock.[3]
Differential diagnosis of underlying causes of cardiogenic shock
The causes of cardiogenic shock can be classified on the basis of the underlying pathophysiologic mechanism:
Systolic left ventricular dysfunction
- Hypophosphatemia as can be seen in the refeeding syndrome)
Diastolic left ventricular dysfunction
- Subendocardial ischemia
- Excess wall stress
Obstruction of left ventricular outflow and increased after load
Reversal of flow into the left ventricle
Inadequate left ventricular filling due to mechanical causes
Inadequate left ventricular filling due to inadequate filling time
- Tachycardia mediated cardiomyopathy
Conduction abnormalities
Mechanical defect
- Myocardial rupture of the left ventricular free wall
Right ventricular failure
Iatrogenic
- Iatrogenic due to excess administration of vasodilators and venodilators
Diagnosis
Symptoms
- Anxiety, agitation, restlessness, and an altered mental state including flacid coma may be present due to decreased cerebral perfusion and ensuing hypoxia.
- Fatigue may be present due to the work of breathing and hypoxia.
Physical Examination
Vitals
- Hypotension may be present due to a decrease in cardiac output.
- Tachycardia with a rapid, weak, thready rapid pulse is present.
- Pulse pressure is reduced
Neck
- Distended jugular veins due to increased jugular venous pressure.
Skin
- Cyanosis, cool, clammy, and mottled skin (cutis marmorata), due to vasoconstriction and subsequent hypoperfusion of the skin are often present.
Lungs
- Rapid and deep respirations (hyperventilation) due to sympathetic nervous system stimulation by stretch receptors and as compensation for metabolic acidosis.
- Pulmonary Edema (fluid in the lungs) due to insufficient pumping of the heart, fluid backs up into the lungs.
Genitourinary
- Oliguria (low urine output) due insufficient renal perfusion is present if the condition persists.
Laboratory findings
Markers of Myonecrosis
An elevation of troponin and CK MB are diagnostic of myonecrosis. This would suggest either ST elevation MI, myocarditis, or myopericarditis, or myonecrosis due to profound hypophosphatemia.
Complete Blood Count
An elevated white blood cell count (WBC) may suggest an alternate diagnosis of septic shock, however, it should be noted that the WBC can be elevated in STEMI due to demarginization. A reduced hemoglobin may suggest an alternate diagnosis of hypovolemic shock. A reduced platelet count may suggest an alternate diagnosis of septic shock.
Serum electrolytes
Hypophosphatemia should be excluded as an underlying cause. Hypophosphatemia mediated myonecrosis can be observed with the refeeding syndrome as phosphate is used to convert glucose to glycogen.
Serum lactate
The magnitude of lactic acidosis is a maker of the extent of hypoperfusion and is valuable in gauging a patient's prognosis.
Electrocardiogram
An electrocardiogram may be useful in distinguishing cardiogenic shock from septic shock or neurogenic shock. A diagnosis of cardiogenic shock is suggested by the presence of ST segment changes, new left bundle branch block or signs of a cardiomyopathy. Cardiac arrhythmias may also be present.
Radiology
The chest x ray will show pulmonary edema, pulmonary vascular redistribution, enlarged hila, Kerley's B lines, and bilateral pleural effusions in patients with left ventricular failure. In contrast, a pneumonia may be present in the patient with septic shock.
The heart may be enlarged (cardiomegaly) in the patient with tamponade. A widened mediastinum may be present in the patient with aortic dissection.
The chest x ray may also be useful in excluding a tension pneumothorax that may be associated with hypotension
Echocardiography
Echocardiography is important imaging modality in the evaluation of the patient with cardiogenic shock. It allows the clinician to distinguish cardiogenic shock from septic shock and neurogenic shock. In cardiogenic shock due to acute MI, poor wall motion will be present. In septic shock, a hypercontractile ventricle may be present. Mechanical complications such as papillary muscle rupture, pseudoaneurysm, and a ventricular septal defect may also be visualized. Valvular heart disease such as aortic stenosis, aortic insufficiency and mitral stenosis can also be assessed. Dynamic outflow obstruction such as HOCM can also be indentified and quantified. The magnitude of left ventricular dysfunction in patients with cardiomyopathy can be evaluated.
Swan-ganz catheter
The Swan-ganz catheter or pulmonary artery catheter may be helpful in distinguishing cardiogenic shock from septic shock and in optimizing the patient's left ventricular filling pressures (see section on Treatment below). The presence of significant V waves (greatly exceeding the pulmonary capillary wedge pressure) on the pulmonary artery tracing suggests either acute mitral regurgitation or a ventricular septal defect.
Biopsy
In case of suspected cardiomyopathy a biopsy of heart muscle may be of benefit in establishing a definitive diagnosis.
Treatment
Urgent revascularizaiton
If the patient has an ST elevation myocardial infarction, then primary angioplasty should be considered to restore flow to the culprit artery. Consideration should also be given to restoration of flow in the non-culprit territories in the setting of cardiogenic shock.
Administration of streptokinase therapy to patients with cardiogenic shock has not been associated with an improvement in survival.[4] These studies, however, oare older and are limited by the infrequent use of adjunctive PCI. If a patient is not deemed a candidate for primary angioplasty, then consideration should be given to fibrinolyitc administration.
Volume management
The goal of managing the patient with cardiogenic shock is to optimize the filling of the left ventricle so that the Starling relationship and mechanical performance and contractility of the heart is optimized. In the setting of acute MI, a pulmonary capillary wedge pressure of 18 to 20 mm Hg may optimize left ventricular filling. Filling pressures higher than this may lead to LV dilation, and poorer left ventricular function.
Pharmacologic hemodynamic support
If hypotension persists despite adequate left ventricular filling pressures, then the addition of vasconstrictors and/or inotropes is suggested. Hemodynamic monitoring is essential to assure that a target mean arterial pressure (MAP) of 60 to 65 mmHg is acheived to maintain perfusion to vital organs (brain, kidney, heart).
Selection of a vasopressor or an inotrope
Systolic blood pressure (SBP) > 80 mm Hg
Dobutamine may be preferable over dopamine at this blood pressure. Dopamine increase contractility and heart rate and thereby increases myocardial oxygen demand. Dobutamine reduces the systemic vascular resistance and may not increase oxygen demands as much as dopamine, and is preferable at this systolic blood pressure. Phosphodiesterase inhibitors (PDIs) such as milrinone and inamrinone (formerly known as amrinone) are not dependent upon the adrenoreceptor activity and patients may not develop tolerance, and they may be less likely to increase myocardial oxygen demands. However, the addition of a vasopressor is often required as these agents reduce preload and afterload. PDIs are more likely to be associated with tachyarrhythmias than dobutamine.
Systolic blood pressure (SBP) < 80 mm Hg
At systolic blood pressures < 80 mm Hg dopamine should be initiated first. The patient may not tolerate the vasodilating effects of dobutamine at this blood pressure. The initial dose of dopamine is 5 to 10 mcg/kg/min.
If the dopamine at doses of 20 mcg/kg/min does not achieve a MAP of 60-65 mm Hg, then norepinephrine can be added at an initial dose of 0.5 mcg/kg/min which can then be titrated up to 3.3 mcg/kg/min. Norepinephrine is avoided as a first line agent because of its adverse impact upon renal perfusion.
If norepinephrine does not generate a MAP of 60 mm Hg, then epinephrine can be added. Epinephrine increases both the stroke volume and heart rate, but is associated with lactic acidosis
Mechanical support
Intra-aortic balloon placement
In the setting of acute MI, the placement of an intra-aortic balloon pump (which reduces workload for the heart, and improves perfusion of the coronary arteries) should be considered.
A recent meta-analysis of randomized trial data, however, challenges this common practice and class 1B recommendation.[5] In a meta-analysis of seven randomized trials enrolling 1009 patient, IABP placement in STEMI was not associated with an improvement in mortality or in left ventricular function but was associated with a higher rate of stroke and bleeding. When data from non-randomized cohort studies were evaluated in a meta-analysis (n=10,529 STEMI patients with cardiogenic shock), IABP placement was associated with an 18% relative risk reduction in 30 day mortality among patients treated with a fibrinolytic agent. This particular analysis is confounded by the fact that those patients in whom an IABP was placed underwent adjunctive percutaneous intervention (PCI) more frequently. In this non-randomized cohort analysis, IABP placement in patients undergoing primary angioplasty was associated with a 6% relative increase in mortality (p<0.0008). Thus, neither randomized nor observational data support IABP placement in the setting of primary PCI for cardiogenic shock, and careful consideration should be given to the risk of stroke and bleeding prior to IABP placement in this population.
Left ventricular assist device placement
In the setting of pronounced hypotension despite medical therapy and IABP placement, placement of a left ventricular assist device (which augments the pump-function of the heart) should be considered. A ventricular assist device should only be placed in those patients in whom the cardiogenic shock is deemed to be reversible or if it is being used as a bridge option. [6]
Coronary artery bypass graft (CABG) placement
CABG in this setting is associated with high rates of mortality and morbidity and is generally not performed if primary angioplasty can be performed.
Mechanical ventilation
Mechanical ventilation is often required in patients with cardiogenic shock to assure adequate oxygenation.
Complications
Complications of cardiogenic shock include:
Cardiac
A downward spiral of hypotension leading to reduced coronary perfusion leading to further hypotension and a further reduction in coronary perfusion
Neurologic
Coma
Renal
Oligurin renal failure
Pulmonary
Cardiogenic pulmonary edema
Prognosis
Cardiogenic shock carries a very poor prognosis, particularly in the elderly. In the GUSTO 1 trial, the following were identified as correlates of higher mortality among patients with cardiogenic shock:[7]
- Older age
- Prior MI
- Signs of hypoperfusion including cold, clammy skin
- Altered mental state
- Oliguria
ACC/AHA Guidelines (DO NOT EDIT)[8]
“ |
Class I1. Intra-aortic balloon counterpulsation is recommended for STEMI patients when cardiogenic shock is not quickly reversed with pharmacological therapy. The IABP is a stabilizing measure for angiography and prompt revascularization. (Level of Evidence: B) 2. Intra-arterial monitoring is recommended for the management of STEMI patients with cardiogenic shock. (Level of Evidence: C) 3. Early revascularization, either PCI or CABG, is recommended for patients less than 75 years old with ST elevation or LBBB who develop shock within 36 hours of MI and who are suitable for revascularization that can be performed within 18 hours of shock unless further support is futile because of the patient’s wishes or contraindications/unsuitability for further invasive care. (Level of Evidence: A) 4. Fibrinolytic therapy should be administered to STEMI patients with cardiogenic shock who are unsuitable for further invasive care and do not have contraindications to fibrinolysis. (Level of Evidence: B) 5. Echocardiography should be used to evaluate mechanical complications unless these are assessed by invasive measures. (Level of Evidence: C) Class IIa1. Pulmonary artery catheter monitoring can be useful for the management of STEMI patients with cardiogenic shock. (Level of Evidence: C) 2. Early revascularization, either PCI or CABG, is reasonable for selected patients 75 years or older with ST elevation or LBBB who develop shock within 36 hours of MI and who are suitable for revascularization that can be performed within 18 hours of shock. Patients with good prior functional status who agree to invasive care may be selected for such an invasive strategy. (Level of Evidence: B) |
” |
See also
Sources
- Irwin, R.S., Rippe, J.M., Curley, F.J., Heard, S.O. (1997) Procedures and Techniques in Intensive Care Medicine (3rd edition). Boston: Lippincott, Williams and Wilkins.
- Marino, P. (1997) The ICU Book. (2nd edition). Philadelphia: Lippincott, Williams and Wilkins.
References
- ↑ Goldberg RJ, Samad NA, Yarzebski J, et al. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med. Apr 15 1999;340(15):1162-8.
- ↑ Hasdai D, Holmes DR, Topol EJ, et al. Frequency and clinical outcome of cardiogenic shock during acute myocardial infarction among patients receiving reteplase or alteplase. Results from GUSTO-III. Global Use of Strategies to Open Occluded Coronary Arteries. Eur Heart J. Jan 1999;20(2):128-35.
- ↑ Hasdai D, Califf RM, Thompson TD, et al. Predictors of cardiogenic shock after thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol. Jan 2000;35(1):136-43.
- ↑ "Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico (GISSI)". Lancet. 1 (8478): 397–402. 1986. PMID 2868337. Unknown parameter
|month=
ignored (help) - ↑ Sjauw KD, Engström AE, Vis MM, van der Schaaf RJ, Baan J, Koch KT, de Winter RJ, Piek JJ, Tijssen JG, Henriques JP (2009). "A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: should we change the guidelines?". European Heart Journal. 30 (4): 459–68. doi:10.1093/eurheartj/ehn602. PMID 19168529. Unknown parameter
|month=
ignored (help) - ↑ Farrar DJ, Lawson JH, Litwak P, Cederwall G. Thoratec VAD system as a bridge to heart transplantation. J Heart Transplant. Jul-Aug 1990;9(4):415-22; discussion 422-3.
- ↑ Hasdai D, Califf RM, Thompson TD, et al. Predictors of cardiogenic shock after thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol. Jan 2000;35(1):136-43.
- ↑ Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, Hochman JS, Krumholz HM, Kushner FG, Lamas GA, Mullany CJ, Ornato JP, Pearle DL, Sloan MA, Smith SC, Alpert JS, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Gregoratos G, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK (2004). "ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction)". Circulation. 110 (9): e82–292. PMID 15339869. Unknown parameter
|month=
ignored (help)
de:Kreislaufstillstand id:Gagal jantung he:דום לב nl:Hartstilstand sr:Кардиогени шок