Pyloric stenosis pathophysiology: Difference between revisions
Line 14: | Line 14: | ||
A secondary [[hyperaldosteronism]] develops due to the [[hypovolaemia]]. The high [[aldosterone]] levels causes the kidneys to: | A secondary [[hyperaldosteronism]] develops due to the [[hypovolaemia]]. The high [[aldosterone]] levels causes the kidneys to: | ||
* | * Avidly retain Na<sup>+</sup> (to correct the intravascular [[volume depletion]]) | ||
* | * Excrete increased amounts of K<sup>+</sup> into the urine (resulting in [[hypokalaemia]]). | ||
The body's compensatory response to the metabolic alkalosis is hypoventilation resulting in an elevated arterial pCO<sub>2</sub>. | The body's compensatory response to the metabolic alkalosis is hypoventilation resulting in an elevated arterial pCO<sub>2</sub>. |
Revision as of 22:31, 2 September 2012
Pyloric stenosis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Pyloric stenosis pathophysiology On the Web |
American Roentgen Ray Society Images of Pyloric stenosis pathophysiology |
Risk calculators and risk factors for Pyloric stenosis pathophysiology |
Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Pathophysiology
The gastric outlet obstruction due to the hypertrophic pylorus impairs emptying of gastric contents into the duodenum. As a consequence, all ingested food and gastric secretions can only exit via vomiting, which can be of a projectile nature. The vomited material does not contain bile because the pyloric obstruction prevents entry of duodenal contents (containing bile) into the stomach.
This results in loss of gastric acid (hydrochloric acid). The chloride loss results in hypochloremia which impairs the kidney's ability to excrete bicarbonate. This is the significant factor that prevents correction of the alkalosis.[1]
A secondary hyperaldosteronism develops due to the hypovolaemia. The high aldosterone levels causes the kidneys to:
- Avidly retain Na+ (to correct the intravascular volume depletion)
- Excrete increased amounts of K+ into the urine (resulting in hypokalaemia).
The body's compensatory response to the metabolic alkalosis is hypoventilation resulting in an elevated arterial pCO2.
Associated Conditions
About 7% of babies will have other conditions such as intestinal malrotation, urinary tract obstruction, and esophageal atresia.
References
- ↑ Kerry Brandis, Acid-Base Physiology. Retrieved December 31, 2006.