Respiratory alkalosis: Difference between revisions

Jump to navigation Jump to search
Priyamvada Singh (talk | contribs)
Priyamvada Singh (talk | contribs)
No edit summary
Line 23: Line 23:
* Mediated through the plasma buffer
* Mediated through the plasma buffer
* For every pCO2 decrease of 10, serum bicarbonate decreases by 2
* For every pCO2 decrease of 10, serum bicarbonate decreases by 2
 
* Change in pH is unpredictable
====Chronic compensatory stage====
====Chronic compensatory stage====
* Renal mediated
* Renal mediated
* Starts within 1-3 days
* Starts within 1-3 days
* For every pCO2 decrease of 10, serum bicarbonate decreases by 5
* For every pCO2 decrease of 10, serum bicarbonate decreases by 5
 
* Change in pH is unpredictable
==Types==
==Types==
There are two types of respiratory alkalosis: chronic and acute.
There are two types of respiratory alkalosis: chronic and acute.

Revision as of 00:14, 3 September 2012

Respiratory alkalosis
Davenport diagram
ICD-10 E87.3
ICD-9 276.3
DiseasesDB 406

WikiDoc Resources for Respiratory alkalosis

Articles

Most recent articles on Respiratory alkalosis

Most cited articles on Respiratory alkalosis

Review articles on Respiratory alkalosis

Articles on Respiratory alkalosis in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Respiratory alkalosis

Images of Respiratory alkalosis

Photos of Respiratory alkalosis

Podcasts & MP3s on Respiratory alkalosis

Videos on Respiratory alkalosis

Evidence Based Medicine

Cochrane Collaboration on Respiratory alkalosis

Bandolier on Respiratory alkalosis

TRIP on Respiratory alkalosis

Clinical Trials

Ongoing Trials on Respiratory alkalosis at Clinical Trials.gov

Trial results on Respiratory alkalosis

Clinical Trials on Respiratory alkalosis at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Respiratory alkalosis

NICE Guidance on Respiratory alkalosis

NHS PRODIGY Guidance

FDA on Respiratory alkalosis

CDC on Respiratory alkalosis

Books

Books on Respiratory alkalosis

News

Respiratory alkalosis in the news

Be alerted to news on Respiratory alkalosis

News trends on Respiratory alkalosis

Commentary

Blogs on Respiratory alkalosis

Definitions

Definitions of Respiratory alkalosis

Patient Resources / Community

Patient resources on Respiratory alkalosis

Discussion groups on Respiratory alkalosis

Patient Handouts on Respiratory alkalosis

Directions to Hospitals Treating Respiratory alkalosis

Risk calculators and risk factors for Respiratory alkalosis

Healthcare Provider Resources

Symptoms of Respiratory alkalosis

Causes & Risk Factors for Respiratory alkalosis

Diagnostic studies for Respiratory alkalosis

Treatment of Respiratory alkalosis

Continuing Medical Education (CME)

CME Programs on Respiratory alkalosis

International

Respiratory alkalosis en Espanol

Respiratory alkalosis en Francais

Business

Respiratory alkalosis in the Marketplace

Patents on Respiratory alkalosis

Experimental / Informatics

List of terms related to Respiratory alkalosis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Respiratory alkalosis results from increased alveolar respiration (hyperventilation) leading to decreased plasma carbon dioxide concentration. This leads to decreased hydrogen ion and bicarbonate concentrations.

Pathophysiology

Compensation in respiratory alkalosis

Acute compensatory stage

  • Starts within minutes to hours
  • Mediated through the plasma buffer
  • For every pCO2 decrease of 10, serum bicarbonate decreases by 2
  • Change in pH is unpredictable

Chronic compensatory stage

  • Renal mediated
  • Starts within 1-3 days
  • For every pCO2 decrease of 10, serum bicarbonate decreases by 5
  • Change in pH is unpredictable

Types

There are two types of respiratory alkalosis: chronic and acute.

Acute respiratory alkalosis

  • Increased levels of carbon dioxide are "blown off" by the lungs, which are hyperventilating.
  • During acute respiratory alkalosis, the person may lose consciousness where the rate of ventilation will resume to normal.

Chronic respiratory alkalosis

  • For every 10 mM drop in pCO2 in blood, there is a corresponding 5 mM of bicarbonate ion drop.
  • The drop of 5 mM of bicarbonate ion is a compensation effect which reduces the alkalosis effect of the drop in pCO2 in blood. This is termed metabolic compensation.

Causes

Lung and airways

Central respiratory drive

Systemic diseases

Special considerations

Symptoms

  • Symptoms of respiratory alkalosis are related to the decreased blood carbon dioxide levels, and include peripheral paraesthesiae.
  • In addition, the alkalosis may disrupt calcium ion balance, and cause the symptoms of hypocalcaemia (such as tetany) with no fall in total serum calcium levels.

Related Chapters

Template:WikiDoc Sources