Long QT Syndrome medical and device therapy: Difference between revisions
No edit summary |
|||
Line 33: | Line 33: | ||
{{WS}} | {{WS}} | ||
[[Category:Cardiology]] | |||
[[Category:Electrophysiology]] | |||
[[Category:Channelopathy]] | |||
[[Category:Genetic disorders]] | |||
[[Category:Syndromes]] |
Revision as of 02:27, 21 September 2012
Long QT Syndrome Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Long QT Syndrome medical and device therapy On the Web |
American Roentgen Ray Society Images of Long QT Syndrome medical and device therapy |
Risk calculators and risk factors for Long QT Syndrome medical and device therapy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2]
Overview
Medical Therapy
Treatment options
There are two treatment options in individuals with LQTS: arrhythmia prevention, and arrhythmia termination.
Arrhythmia prevention
Arrhythmia suppression involves the use of medications or surgical procedures that attack the underlying cause of the arrhythmias associated with LQTS. Since the cause of arrhythmias in LQTS is after depolarizations, and these after depolarizations are increased in states of adrenergic stimulation, steps can be taken to blunt adrenergic stimulation in these individuals. These include:
- Administration of beta receptor blocking agents which decreases the risk of stress induced arrhythmias. Beta blockers are the first choice in treating Long QT syndrome.
In 2004 it has been shown that genotype and QT interval duration are independent predictors of recurrence of life-threatening events during beta-blockers therapy. Specifically the presence of QTc >500ms and LQT2 and LQT3 genotype are associated with the highest incidence of recurrence. In these patients primary prevention with ICD (Implantable Cardioverster Defibrilator) implantaion can be considered.[1]
- Potassium supplementation. If the potassium content in the blood rises, the action potential shortens and due to this reason it is believed that increasing potassium concentration could minimize the occurrence of arrhythmias. It should work best in LQT2 since the HERG channel is especially sensible to potassium concentration, but the use is experimental and not evidence based.
- Mexiletine. A sodium channel blocker. In LQT3 the problem is that the sodium channel does not close properly. Mexiletine closes these channels and is believed to be usable when other therapies fail. It should be especially effective in LQT3 but there is no evidence based documentation.
- Amputation of the cervical sympathetic chain (left stellectomy). This may be used as an add-on therapy to beta blockers but modern therapy mostly favors ICD implantation if beta blocker therapy fails.
Arrhythmia termination
Arrhythmia termination involves stopping a life-threatening arrhythmia once it has already occurred. The only effective form of arrhythmia termination in individuals with LQTS is placement of an implantable cardioverter-defibrillator (ICD). ICD are commonly used in patients with syncopes despite beta blocker therapy, and in patients who have experienced a cardiac arrest.
With better knowledge of the genetics underlying the long QT syndrome, more precise treatments will be readily available.[2]
References
- ↑ Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, Moncalvo C, Tulipani C, Veia A, Bottelli G, Nastoli J. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004 Sep 15;292(11):1341-4.15367556
- ↑ Compton SJ, Lux RL, Ramsey MR, Strelich KR, Sanguinetti MC, Green LS, Keating MT, Mason JW. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation. 1996 Sep 1;94(5):1018-22. PMID 8790040