Osborn wave: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:
Over the years, the unusual wave increasingly has been called an [[Osborn wave]], probably because of Osborn's excellent descriptive article written in 1953. Clinicians labeled the deflection an [[Osborn wave]] in honor of Osborn, one of the first American Heart Association research fellows. <ref>Osborn JJ. ''Experimental hypothermia: Respiratory and blood pH changes in relation to cardiac function.'' Am J Physiol 1953; 175: 389-398.</ref> <ref>Maruyama, Mitsunori and Kobayashi, Yoshinori and Kodani, Eitaroh and Hirayama, Yoshiyuki and Atarashi, Hirotsugu and Katoh, Takao and Takano, Teruo. ''Osborn Waves: History and Significance.'' Indian Pacing and Electrophysiology Journal 4(1):pp. 33-39 PMID 16943886 </ref>
Over the years, the unusual wave increasingly has been called an [[Osborn wave]], probably because of Osborn's excellent descriptive article written in 1953. Clinicians labeled the deflection an [[Osborn wave]] in honor of Osborn, one of the first American Heart Association research fellows. <ref>Osborn JJ. ''Experimental hypothermia: Respiratory and blood pH changes in relation to cardiac function.'' Am J Physiol 1953; 175: 389-398.</ref> <ref>Maruyama, Mitsunori and Kobayashi, Yoshinori and Kodani, Eitaroh and Hirayama, Yoshiyuki and Atarashi, Hirotsugu and Katoh, Takao and Takano, Teruo. ''Osborn Waves: History and Significance.'' Indian Pacing and Electrophysiology Journal 4(1):pp. 33-39 PMID 16943886 </ref>


==Examples==
==Diagnosis==
===Electrocardiogram===
Osborn waves are positive deflections occurring at the junction between the [[QRS complex]] and the ST segment, where the S point, also known as the J joint, has a [[myocardial infarction]]-like elevation.
 
All J wave deflections do not look alike. Some are merely elevations of [[ST segment]]s in leads V<sub>1</sub> and V<sub>2</sub>, whereas others are of the spike-and-dome variety. This leads to the conclusion that different mechanisms may be responsible for the size and shape of [[J wave]] deflections.
 
===Electrocardiographic Examples===


<div align="center">
<div align="center">

Revision as of 20:53, 23 September 2012

An Osborne J wave
Osborne J waves

WikiDoc Resources for Osborn wave

Articles

Most recent articles on Osborn wave

Most cited articles on Osborn wave

Review articles on Osborn wave

Articles on Osborn wave in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Osborn wave

Images of Osborn wave

Photos of Osborn wave

Podcasts & MP3s on Osborn wave

Videos on Osborn wave

Evidence Based Medicine

Cochrane Collaboration on Osborn wave

Bandolier on Osborn wave

TRIP on Osborn wave

Clinical Trials

Ongoing Trials on Osborn wave at Clinical Trials.gov

Trial results on Osborn wave

Clinical Trials on Osborn wave at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Osborn wave

NICE Guidance on Osborn wave

NHS PRODIGY Guidance

FDA on Osborn wave

CDC on Osborn wave

Books

Books on Osborn wave

News

Osborn wave in the news

Be alerted to news on Osborn wave

News trends on Osborn wave

Commentary

Blogs on Osborn wave

Definitions

Definitions of Osborn wave

Patient Resources / Community

Patient resources on Osborn wave

Discussion groups on Osborn wave

Patient Handouts on Osborn wave

Directions to Hospitals Treating Osborn wave

Risk calculators and risk factors for Osborn wave

Healthcare Provider Resources

Symptoms of Osborn wave

Causes & Risk Factors for Osborn wave

Diagnostic studies for Osborn wave

Treatment of Osborn wave

Continuing Medical Education (CME)

CME Programs on Osborn wave

International

Osborn wave en Espanol

Osborn wave en Francais

Business

Osborn wave in the Marketplace

Patents on Osborn wave

Experimental / Informatics

List of terms related to Osborn wave

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Synonyms and keywords: camel-hump sign; late delta wave; hathook junction; hypothermic wave; J point wave; K wave; H wave; current of injury

Overview

Osborn waves (also known as ) are usually observed on the electrocardiogram of people suffering from hypothermia, though they may also occur in people with high blood levels of calcium (hypercalcemia), brain injury, subarachnoid hemorrhage, damage to sympathetic nerves in the neck, and cardiopulmonary arrest from over sedation, vasospastic angina, or ventricular fibrillation. [1] [2] [3] [4]

Historical Perspective

The prominent J deflection attributed to hypothermia was first reported in 1938 by Tomaszewski. The wave was observed by others, including Kossmann, Grosse-Brockhoff and Schoedel, Bigelow et al, Juvenelle et al, and Osborn. [5] [6] [7] [8]

Over the years, the unusual wave increasingly has been called an Osborn wave, probably because of Osborn's excellent descriptive article written in 1953. Clinicians labeled the deflection an Osborn wave in honor of Osborn, one of the first American Heart Association research fellows. [9] [10]

Diagnosis

Electrocardiogram

Osborn waves are positive deflections occurring at the junction between the QRS complex and the ST segment, where the S point, also known as the J joint, has a myocardial infarction-like elevation.

All J wave deflections do not look alike. Some are merely elevations of ST segments in leads V1 and V2, whereas others are of the spike-and-dome variety. This leads to the conclusion that different mechanisms may be responsible for the size and shape of J wave deflections.

Electrocardiographic Examples

EKG's from a case report


References

  1. Juvenelle A, Lind J, Wegelius C. Quelques possibilitiés offertes par l'hypothermie générale profonde provoquée: une étude expérimentale chez le chien. Presse Med. 1952;60:973–978.
  2. Hersch C. Electrocardiographic changes in head injuries. Circulation. 1961;23:853–860.
  3. De Sweit J. Changes simulating hypothermia in the electrocardiogram in subarachnoid hemorrhage. J Electrocardiol. 1972;5:93–95.
  4. Hugenholtz PG. Electrocardiographic changes typical for central nervous system disease after right radical neck dissection. Am Heart J. 1967; 74:438–441.
  5. Tomaszewski W. Changements électrocardiographiques observés chez un homme mort de froit. Arch Mal Coeur. 1938;31:525–528.
  6. Kossmann CE. General cryotherapy: cardiovascular aspects. Bull N Y Acad Med. 1940;16:317.
  7. Grosse-Brockhoff F, Schoedel W. Das bild der akuten unterkuhlung im tierexperiment. Arch Exp Path Pharmakol. 1943;201:417.
  8. Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia: its possible role in cardiac surgery: investigation of factors governing survival in dogs at low body temperatures. Ann Surg. 1950;132:849–866.
  9. Osborn JJ. Experimental hypothermia: Respiratory and blood pH changes in relation to cardiac function. Am J Physiol 1953; 175: 389-398.
  10. Maruyama, Mitsunori and Kobayashi, Yoshinori and Kodani, Eitaroh and Hirayama, Yoshiyuki and Atarashi, Hirotsugu and Katoh, Takao and Takano, Teruo. Osborn Waves: History and Significance. Indian Pacing and Electrophysiology Journal 4(1):pp. 33-39 PMID 16943886
  11. Maruyama M, Kobayashi Y, Kodani E, Hirayama Y, Atarashi H, Katoh T, Takano T. Osborn Waves: History and Significance. Indian Pacing and Electrophysiology Journal, 4(1): 33-39 (2004) PMID 16943886
  12. 12.0 12.1 Hoşcan Y, Ozgül M. (2006). "Report of a case with huge Osborn waves". Anadolu Kardiyol Derg. 6: 411–12. PMID 17162309.


Template:WikiDoc Sources