Indigestion pathophysiology: Difference between revisions

Jump to navigation Jump to search
Aditya Govindavarjhulla (talk | contribs)
Aditya Govindavarjhulla (talk | contribs)
No edit summary
Line 3: Line 3:
{{CMG}}
{{CMG}}


Please help WikiDoc by adding more content here. It's easy! Click [[help:How to Edit a Page|here]] to learn about editing.
==Pathophysiology==
==Pathophysiology==



Revision as of 15:19, 21 March 2013

Indigestion

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Risk Factors

Causes

Differentiating Indigestion from other Conditions

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Abdominal X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Indigestion pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Indigestion pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Indigestion pathophysiology

CDC on Indigestion pathophysiology

Indigestion pathophysiology in the news

Blogs on Indigestion pathophysiology

Directions to Hospitals Treating Indigestion

Risk calculators and risk factors for Indigestion pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.

Pathophysiology

Overview of Physiology

  • In humans, digestion begins in the mouth where food is chewed. Salivary amylase aids in the chemical breakdown of polysaccharides such as starch into disaccharides such as maltose.
  • The chewed food is pushed down the esophagus to the stomach through peristaltic contraction of these muscles.
  • Food enters the stomach where it is further broken apart and thoroughly mixed with gastric acid, pepsin and other digestive enzymes to break down proteins.
  • After consumption of food, digestive tonic and peristaltic contractions begin, which helps break down the food and move it through. Gastric emptying is the release of food from the stomach into the duodenum. Gastric emptying has attracted medical interest as rapid gastric emptying is related to obesity and delayed gastric emptying syndrome is associated with diabetes mellitus, aging, and gastroesophageal reflux.
  • After being processed in the stomach, food is passed to the small intestine. The majority of digestion and absorption occurs here after the milky chyme enters the duodenum. Here it is further mixed with three different liquids:
    • Bile which is produced by the liver and stored in the gallbladder emulsifies fats and neutralizes the chyme.
    • Pancreatic juice made by the pancreas. It secrete enzymes such as pancreatic amylase, pancreatic lipase, and trypsinogen.
    • Intestinal juice secreted by the intestinal glands in the small intestine. It contains enzymes such as enteropeptidase, erepsin, trypsin, chymotrypsin, maltase, lactase and sucrase.

References


Template:WikiDoc Sources