High density lipoprotein physiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{High density lipoprotein}}
{{CMG}}; {{AE}} {{AO}}
{{CMG}}; {{AE}} {{AO}}


Line 16: Line 17:
{{Reflist|2}}
{{Reflist|2}}


{{Lipopedia}}
[[Category:Lipopedia]]
[[Category:Lipid disorders]]
[[Category:Lipid disorders]]
[[Category:Cardiology]]
[[Category:Cardiology]]

Revision as of 12:10, 13 September 2013

High Density Lipoprotein Microchapters

Home

Patient information

Overview

Historical Perspective

Classification

Physiology

Pathophysiology

Causes

Low HDL
High HDL

Epidemiology and Demographics

Screening

Natural History, Complications and Prognosis

Diagnosis

HDL Laboratory Test

Treatment

Medical Therapy

Prevention

Future or Investigational Therapies

Clinical Trials

Landmark Trials

List of All Trials

Case Studies

Case #1

High density lipoprotein physiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of High density lipoprotein physiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on High density lipoprotein physiology

CDC on High density lipoprotein physiology

High density lipoprotein physiology in the news

Blogs on High density lipoprotein physiology

Directions to Hospitals Treating High density lipoprotein

Risk calculators and risk factors for High density lipoprotein physiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ayokunle Olubaniyi, M.B,B.S [2]

Overview

Physiology

HDL Metabolism

  • As mentioned above, the HDL is synthesized in liver and intestines as small nascent particles, composed mainly of phospholipids and apolipoproteins.
  • As it travels in the blood it acquires surface components, like more phospholipids, cholesterol and apolipoproteins, from triglyceride depleted chylomicrons and remnants of VLDL.
  • As this initial HDL particle contains less amounts of cholesterol, it acquires free unesterified cholesterol from tissues of the liver and arterial walls. This hydrophobic free cholesterol sinks into the center of the HDL particle. The Apolipoprotein A1 acts as a signal protein in mobilizing cholesterol esters from within the cells.
  • In the peripheral tissues, the nascent HDL particles interact with a cell surface protein called ABCA1 (also known as cholesterol efflux regulatory protein, CERP). High cholesterol levels induce expression of ABCA1 gene and production of the protein. Mutations of this transport protein gene causes familial HDL deficiencies and Tangier disease. The HDL also accepts cholesterol from triglycerides that has undergone lipolysis.
  • Once the cholesterol is acquired by the nascent HDL particles from the peripheral tissues, it gets esterified by a plasma enzyme LCAT (Lecithin-cholesterol acyltransferase). This enzyme is activated by apolipoprotein A1 .

References


Template:WikiDoc Sources