Hypolipoproteinemia pathophysiology: Difference between revisions

Jump to navigation Jump to search
Rim Halaby (talk | contribs)
No edit summary
Rim Halaby (talk | contribs)
Line 7: Line 7:


==Pathophysiology==
==Pathophysiology==
==Primary Lipoprotein Disorders==
Shown below is a table summarizing the primary hypolipoproteinemia along with the involved gene and main lipoprotein.


===Primary hypolipidemia===
{| class="wikitable sortable" style="font-size:90%"
Genetic mutations cause an underproduction or increased clearance of [[Low Density Lipoproteins]] (LDL) and result in lipid levels low enough to cause significant consequences.
! '''Primary Hypolipoproteienmia'''
! '''Gene'''
! '''Main Lipoprotein Involved'''
|-
| [[Abetalipoproteienmia]] || Mirosomal triglyceride transfer protein (MTR)|| [[LDL]]
|-
| Apolipoprotein 1 deficiency || Apolipoprotein AI|| [[HDL]]
|-
| Chylomicron retention disease || SAR1B|| Multiple
|-
| Familial combined hypolipidemia || ANGPTL3|| Multiple
|-
| [[Hypobetalipoproteinemia]] ||Apo B||[[LDL]]
|-
| [[LCAT]] deficiency || [[LCAT]]|| [[HDL]]
|-
| Primary alphalipoproteinemia ||Undetermined|| [[HDL]]
|-
| [[PCSK9 deficiency]] || PCSK9|| [[LDL]]
|-
| [[Tangier disease]] ||ABCA1|| [[HDL]]
|-
|}


*Abetalipoproteinemia (Bassen-Kornzweig syndrome):  is a rare [[autosomal recessive]] disorder that interferes with the normal absorption of fat and fat-soluble vitamins from food.  It is caused by a mutation in [[microsomal triglyceride transfer protein]], resulting in deficiencies in the apolipoproteins B-48 and B-100, which are critical to [[chylomicron]] and [[very-low-density lipoprotein]] (VLDL) formation.<ref name="pmid17275380">{{cite journal| author=Benayoun L, Granot E, Rizel L, Allon-Shalev S, Behar DM, Ben-Yosef T| title=Abetalipoproteinemia in Israel: evidence for a founder mutation in the Ashkenazi Jewish population and a contiguous gene deletion in an Arab patient. | journal=Mol Genet Metab | year= 2007 | volume= 90 | issue= 4 | pages= 453-7 | pmid=17275380 | doi=10.1016/j.ymgme.2006.12.010 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17275380  }} </ref>  Dietary fat cannot be absorbed, and lipoproteins in both metabolic pathways are virtually absent from serum, TC is typically < 45 mg/dL (< 1.16 mmol/L), TGs are < 20 mg/dL (< 0.23 mmol/L), and LDL is undetectable.  The condition is often first noticed in infants with fat malabsorption, steatorrhea, and failure to thrive.
*Abetalipoproteinemia (Bassen-Kornzweig syndrome):  is a rare [[autosomal recessive]] disorder that interferes with the normal absorption of fat and fat-soluble vitamins from food.  It is caused by a mutation in [[microsomal triglyceride transfer protein]], resulting in deficiencies in the apolipoproteins B-48 and B-100, which are critical to [[chylomicron]] and [[very-low-density lipoprotein]] (VLDL) formation.<ref name="pmid17275380">{{cite journal| author=Benayoun L, Granot E, Rizel L, Allon-Shalev S, Behar DM, Ben-Yosef T| title=Abetalipoproteinemia in Israel: evidence for a founder mutation in the Ashkenazi Jewish population and a contiguous gene deletion in an Arab patient. | journal=Mol Genet Metab | year= 2007 | volume= 90 | issue= 4 | pages= 453-7 | pmid=17275380 | doi=10.1016/j.ymgme.2006.12.010 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17275380  }} </ref>  Dietary fat cannot be absorbed, and lipoproteins in both metabolic pathways are virtually absent from serum, TC is typically < 45 mg/dL (< 1.16 mmol/L), TGs are < 20 mg/dL (< 0.23 mmol/L), and LDL is undetectable.  The condition is often first noticed in infants with fat malabsorption, steatorrhea, and failure to thrive.
Line 16: Line 40:


*Chylomicron retention disease: is a very rare autosomal recessive condition caused by an unknown mutation leading to deficient apo B secretion from enterocytes.  Chylomicron synthesis is absent, but VLDL synthesis remains intact.
*Chylomicron retention disease: is a very rare autosomal recessive condition caused by an unknown mutation leading to deficient apo B secretion from enterocytes.  Chylomicron synthesis is absent, but VLDL synthesis remains intact.
==Secondary Lipoprotein Disorders==
Hypolipedemia has been found in association with different clinical conditions.


===Secondary hypolipidemia===
* Anemia: Hypolipedemia has been identified in association with different types of anemia e.g.congenital dyserythropoietic anemia, congenital spherocytosis, sickle cell anemia, beta-thalassemia, aplastic anemia, and sideroblastic anemia.<ref name="pmid17039515">{{cite journal| author=Shalev H, Kapelushnik J, Moser A, Knobler H, Tamary H| title=Hypocholesterolemia in chronic anemias with increased erythropoietic activity. | journal=Am J Hematol | year= 2007 | volume= 82 | issue= 3 | pages= 199-202 | pmid=17039515 | doi=10.1002/ajh.20804 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17039515  }} </ref><ref name="pmid7285349">{{cite journal| author=Johnsson R, Saris NE| title=Plasma and erythrocyte lipids in hereditary spherocytosis. | journal=Clin Chim Acta | year= 1981 | volume= 114 | issue= 2-3 | pages= 263-8 | pmid=7285349 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7285349  }} </ref><ref name="pmid14527048">{{cite journal| author=Shores J, Peterson J, VanderJagt D, Glew RH| title=Reduced cholesterol levels in African-American adults with sickle cell disease. | journal=J Natl Med Assoc | year= 2003 | volume= 95 | issue= 9 | pages= 813-7 | pmid=14527048 | doi= | pmc=PMC2594470 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14527048  }} </ref><ref name="pmid12378195">{{cite journal| author=Hartman C, Tamary H, Tamir A, Shabad E, Levine C, Koren A et al.| title=Hypocholesterolemia in children and adolescents with beta-thalassemia intermedia. | journal=J Pediatr | year= 2002 | volume= 141 | issue= 4 | pages= 543-7 | pmid=12378195 | doi=10.1067/mpd.2002.127498 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12378195  }} </ref><ref name="pmid11192516">{{cite journal| author=Yokoyama M, Suto Y, Sato H, Arai K, Waga S, Kitazawa J et al.| title=Low serum lipids suggest severe bone marrow failure in children with aplastic anemia. | journal=Pediatr Int | year= 2000 | volume= 42 | issue= 6 | pages= 613-9 | pmid=11192516 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11192516  }} </ref>  The exact etiology of hypolipidemia in anemic patients is not known, some studies outlined different mechanisms,<ref name="pmid3377269">{{cite journal| author=Asai K, Kuzuya M, Naito M, Funaki C, Kuzuya F| title=Effects of splenectomy on serum lipids and experimental atherosclerosis. | journal=Angiology | year= 1988 | volume= 39 | issue= 6 | pages= 497-504 | pmid=3377269 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3377269  }} </ref><ref name="pmid11192516">{{cite journal| author=Yokoyama M, Suto Y, Sato H, Arai K, Waga S, Kitazawa J et al.| title=Low serum lipids suggest severe bone marrow failure in children with aplastic anemia. | journal=Pediatr Int | year= 2000 | volume= 42 | issue= 6 | pages= 613-9 | pmid=11192516 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11192516  }} </ref> another study suggest that hypolipidemia might be the cause rather than the consequence of anemia, which is explained by that cholesterol deficiency leads to rigidity of the erythrocytes, making them more prone to destruction.<ref name="pmid6779152">{{cite journal| author=Pok SJ, Deutsch E, Nemesánszky E, Sas G, Pálos LA, Bräuer H et al.| title=[Cholesterol deficiency. A pathogenetic factor in chronic anemias? Preliminary report of a study in three states (author's transl)]. | journal=MMW Munch Med Wochenschr | year= 1980 | volume= 122 Suppl 3 | issue=  | pages= S123-31 | pmid=6779152 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6779152  }} </ref>


*In anemia:
*Hyperthyroidism: Thyroid hormone influence lipid metabolism and are common in dyslipidemic patients, and its dysfunction affect composition and transport of lipoproteins,<ref name="pmid17018450">{{cite journal| author=Liberopoulos EN, Elisaf MS| title=Dyslipidemia in patients with thyroid disorders. | journal=Hormones (Athens) | year= 2002 | volume= 1 | issue= 4 | pages= 218-23 | pmid=17018450 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17018450 }} </ref> hence the importance of Biochemical screening for thyroid dysfunction  in all dyslipidemic patients.
Mechanisms suggested that high-erythropoitic activity-associated hypocholesterolemia is due to increased cholesterol requirements by the proliferating erythoid cells.<ref name="pmid17039515">{{cite journal| author=Shalev H, Kapelushnik J, Moser A, Knobler H, Tamary H| title=Hypocholesterolemia in chronic anemias with increased erythropoietic activity. | journal=Am J Hematol | year= 2007 | volume= 82 | issue= 3 | pages= 199-202 | pmid=17039515 | doi=10.1002/ajh.20804 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17039515 }} </ref>


*In hyperthyroidism:
*Critical illness: Cholesterol levels drop at the onset of acute illness, and normalize after recovery.  This may predispose the critically ill patient to sepsis and adrenal failure, and early enteral nutrition and tight glycemic control recommended to accelerate the recovery of the cholesterol levels.<ref name="pmid16399025">{{cite journal| author=Marik PE| title=Dyslipidemia in the critically ill. | journal=Crit Care Clin | year= 2006 | volume= 22 | issue= 1 | pages= 151-9, viii | pmid=16399025 | doi=10.1016/j.ccc.2005.08.008 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16399025 }} </ref><ref name="pmid14624689">{{cite journal| author=Dunham CM, Fealk MH, Sever WE| title=Following severe injury, hypocholesterolemia improves with convalescence but persists with organ failure or onset of infection. | journal=Crit Care | year= 2003 | volume= 7 | issue= 6 | pages= R145-53 | pmid=14624689 | doi=10.1186/cc2382 | pmc=PMC374375 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14624689 }} </ref>
Thyroid hormone dysfunction affect composition and transport of lipoproteins,<ref name="pmid17018450">{{cite journal| author=Liberopoulos EN, Elisaf MS| title=Dyslipidemia in patients with thyroid disorders. | journal=Hormones (Athens) | year= 2002 | volume= 1 | issue= 4 | pages= 218-23 | pmid=17018450 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17018450 }} </ref> Moreover, the triiodothyronine (T3) enhances the gene expression of the LDL receptor and hence the receptor activity.<ref name="pmid17018450">{{cite journal| author=Liberopoulos EN, Elisaf MS| title=Dyslipidemia in patients with thyroid disorders. | journal=Hormones (Athens) | year= 2002 | volume= 1 | issue= 4 | pages= 218-23 | pmid=17018450 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17018450 }} </ref>


*In critical illness:
*Malignancy: Several epidemiological studies suggested an inverse relation between serum cholesterol level and cancer mortality.<ref name="pmid15354407">{{cite journal| author=Tomiki Y, Suda S, Tanaka M, Okuzawa A, Matsuda M, Ishibiki Y et al.| title=Reduced low-density-lipoprotein cholesterol causing low serum cholesterol levels in gastrointestinal cancer: a case control study. | journal=J Exp Clin Cancer Res | year= 2004 | volume= 23 | issue= 2 | pages= 233-40 | pmid=15354407 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15354407 }} </ref>
Downregulation of hepatic synthesis due to decreased production of cholesterol precursors particularly lanosterol and lathosterol.<ref name="pmid14743581">{{cite journal| author=Bakalar B, Hyspler R, Pachl J, Zadak Z| title=Changes in cholesterol and its precursors during the first days after major trauma. | journal=Wien Klin Wochenschr | year= 2003 | volume= 115 | issue= 21-22 | pages= 775-9 | pmid=14743581 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14743581  }} </ref><ref name="pmid10470581">{{cite journal| author=Giovannini I, Boldrini G, Chiarla C, Giuliante F, Vellone M, Nuzzo G| title=Pathophysiologic correlates of hypocholesterolemia in critically ill surgical patients. | journal=Intensive Care Med | year= 1999 | volume= 25 | issue= 7 | pages= 748-51 | pmid=10470581 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10470581  }} </ref>  Other different mechanisms include loss of apoproteins in burns, increased cholesterol catabolism, and Low cholesterol concentrations associated with high levels of cytokines such as interleukin (IL)-6 and IL-10 may be involved.<ref name="pmid7431454">{{cite journal| author=Coombes EJ, Shakespeare PG, Batstone GF| title=Lipoprotein changes after burn injury in man. | journal=J Trauma | year= 1980 | volume= 20 | issue= 11 | pages= 971-5 | pmid=7431454 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7431454  }} </ref><ref name="pmid10470581">{{cite journal| author=Giovannini I, Boldrini G, Chiarla C, Giuliante F, Vellone M, Nuzzo G| title=Pathophysiologic correlates of hypocholesterolemia in critically ill surgical patients. | journal=Intensive Care Med | year= 1999 | volume= 25 | issue= 7 | pages= 748-51 | pmid=10470581 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10470581  }} </ref><ref name="pmid15142422">{{cite journal| author=Bonville DA, Parker TS, Levine DM, Gordon BR, Hydo LJ, Eachempati SR et al.| title=The relationships of hypocholesterolemia to cytokine concentrations and mortality in critically ill patients with systemic inflammatory response syndrome. | journal=Surg Infect (Larchmt) | year= 2004 | volume= 5 | issue= 1 | pages= 39-49 | pmid=15142422 | doi=10.1089/109629604773860291 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15142422 }} </ref>


*In malignancy:
*Malabsorption: Fat malabsorption can lead to hypolipidemia, as the dietary fats constitute the exogenous source of body lipids.  Brar et al demonstrated that celiac disease is associated with hypocholesterolemia and a gluten-free diet will result in rising of total cholesterol and [[HDL]].<ref name="pmid16945614">{{cite journal| author=Brar P, Kwon GY, Holleran S, Bai D, Tall AR, Ramakrishnan R et al.| title=Change in lipid profile in celiac disease: beneficial effect of gluten-free diet. | journal=Am J Med | year= 2006 | volume= 119 | issue= 9 | pages= 786-90 | pmid=16945614 | doi=10.1016/j.amjmed.2005.12.025 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16945614 }} </ref>
Elevated LDL receptor activity in malignant cells may be a contributing factor to hypocholesterolemia in some cancer patients.<ref name="pmid4068801">{{cite journal| author=Peterson C, Vitols S, Rudling M, Blomgren H, Edsmyr F, Skoog L| title=Hypocholesterolemia in cancer patients may be caused by elevated LDL receptor activities in malignant cells. | journal=Med Oncol Tumor Pharmacother | year= 1985 | volume= 2 | issue= 3 | pages= 143-7 | pmid=4068801 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4068801 }} </ref>


*In malabsorption:
*Infection: The chronic effect of proinflammatory cytokines on lipoprotein metabolism seen in acute and chronic, bacterial, viral, and parasitic infections all might induce hypocholesterolemia.<ref name="pmid9775136">{{cite journal| author=Bentz MH, Magnette J| title=[Hypocholesterolemia during the acute phase of an inflammatory reaction of infectious origin. 120 cases]. | journal=Rev Med Interne | year= 1998 | volume= 19 | issue= 3 | pages= 168-72 | pmid=9775136 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9775136 }} </ref>
The loss of the main source of exogenous fat can lead to hypolipidemia.<ref name="pmid16945614">{{cite journal| author=Brar P, Kwon GY, Holleran S, Bai D, Tall AR, Ramakrishnan R et al.| title=Change in lipid profile in celiac disease: beneficial effect of gluten-free diet. | journal=Am J Med | year= 2006 | volume= 119 | issue= 9 | pages= 786-90 | pmid=16945614 | doi=10.1016/j.amjmed.2005.12.025 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16945614 }} </ref>


*In infection:
*Chronic liver disease: Hypolipidemia is frequently observed in severe chronic hepatic insufficiency, as the hepatocytes is the main site for lipid metabolism.<ref name="pmid9867102">{{cite journal| author=D'Arienzo A, Manguso F, Scaglione G, Vicinanza G, Bennato R, Mazzacca G| title=Prognostic value of progressive decrease in serum cholesterol in predicting survival in Child-Pugh C viral cirrhosis. | journal=Scand J Gastroenterol | year= 1998 | volume= 33 | issue= 11 | pages= 1213-8 | pmid=9867102 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9867102 }} </ref>
The chronic effect of proinflammatory cytokines on lipoprotein metabolism, which is mediated by different cytokines as IL-1 and tumor necrosis factor-alpha (TNF) which are involved in the acute phase response during sepsis.<ref name="pmid9775136">{{cite journal| author=Bentz MH, Magnette J| title=[Hypocholesterolemia during the acute phase of an inflammatory reaction of infectious origin. 120 cases]. | journal=Rev Med Interne | year= 1998 | volume= 19 | issue= 3 | pages= 168-72 | pmid=9775136 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9775136  }} </ref>  It has been observed that Convalescing patients ready discharge have improved cholesterol levels, whereas dying patients appear to have progressive hypocholesterolemia.<ref name="pmid14624689">{{cite journal| author=Dunham CM, Fealk MH, Sever WE| title=Following severe injury, hypocholesterolemia improves with convalescence but persists with organ failure or onset of infection. | journal=Crit Care | year= 2003 | volume= 7 | issue= 6 | pages= R145-53 | pmid=14624689 | doi=10.1186/cc2382 | pmc=PMC374375 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14624689  }} </ref>
 
*In Chronic liver disease:
Isolated deficiency of [[apolipoprotein B]] indicates abetalipoproteinemia or familial hypobetalipoproteinemia, which can result in liver involvement in the form of elevated transaminases, fatty liver and cirrhosis. While deficiency of both apolipoprotein A and apolipoprotein B is a manifestation of advanced chronic liver disease.<ref name="pmid11225145">{{cite journal| author=Shah SS, Desai HG| title=Apolipoprotein deficiency and chronic liver disease. | journal=J Assoc Physicians India | year= 2001 | volume= 49 | issue=  | pages= 274-8 | pmid=11225145 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11225145  }} </ref>
 
*In Chronic inflammation:
Hypolipedemia occur in chronic inflamation due to the chronic effect of proinflammatory cytokines on lipoprotein metabolism.  Ettinger et al demonstrated that chronic IL-6 injection causes acquired hypocholesterolemia in nonhuman primates.<ref name="pmid7743398">{{cite journal| author=Ettinger WH, Sun WH, Binkley N, Kouba E, Ershler W| title=Interleukin-6 causes hypocholesterolemia in middle-aged and old rhesus monkeys. | journal=J Gerontol A Biol Sci Med Sci | year= 1995 | volume= 50 | issue= 3 | pages= M137-40 | pmid=7743398 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7743398 }} </ref>


*Chronic inflammation: In the acute phase response to inflammation, reduction in plasma lipid levels is a well known phenomenon, it is explained by the chronic effect of proinflammatory cytokines on lipoprotein metabolism.<ref name="pmid21499464">{{cite journal| author=Elmehdawi R| title=Hypolipidemia: a word of caution. | journal=Libyan J Med | year= 2008 | volume= 3 | issue= 2 | pages= 84-90 | pmid=21499464 | doi=10.4176/071221 | pmc=PMC3074286 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21499464  }} </ref><ref name="pmid7743398">{{cite journal| author=Ettinger WH, Sun WH, Binkley N, Kouba E, Ershler W| title=Interleukin-6 causes hypocholesterolemia in middle-aged and old rhesus monkeys. | journal=J Gerontol A Biol Sci Med Sci | year= 1995 | volume= 50 | issue= 3 | pages= M137-40 | pmid=7743398 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7743398  }} </ref>


==References==
==References==

Revision as of 15:00, 17 September 2013

Lipid Disorders Main Page

Overview

Causes

Classification

Abetalipoproteinemia
Hypobetalipoproteinemia
Familial hypoalphalipoproteinemia
LCAT Deficiency
Chylomicron retention disease
Tangier disease
Familial combined hypolipidemia

Differential Diagnosis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohamed Moubarak, M.D. [2]

Overview

Multiple mechanisms have been described in different diseases and clinical conditions that are found to be associated with hypolipidemia. Secondary causes are far more common than primary causes and include anemia, hyperthyroidism, critical illness, malignancy, malabsorption, infection, Chronic liver disease, and Chronic inflammation.

Pathophysiology

Primary Lipoprotein Disorders

Shown below is a table summarizing the primary hypolipoproteinemia along with the involved gene and main lipoprotein.

Primary Hypolipoproteienmia Gene Main Lipoprotein Involved
Abetalipoproteienmia Mirosomal triglyceride transfer protein (MTR) LDL
Apolipoprotein 1 deficiency Apolipoprotein AI HDL
Chylomicron retention disease SAR1B Multiple
Familial combined hypolipidemia ANGPTL3 Multiple
Hypobetalipoproteinemia Apo B LDL
LCAT deficiency LCAT HDL
Primary alphalipoproteinemia Undetermined HDL
PCSK9 deficiency PCSK9 LDL
Tangier disease ABCA1 HDL
  • Abetalipoproteinemia (Bassen-Kornzweig syndrome): is a rare autosomal recessive disorder that interferes with the normal absorption of fat and fat-soluble vitamins from food. It is caused by a mutation in microsomal triglyceride transfer protein, resulting in deficiencies in the apolipoproteins B-48 and B-100, which are critical to chylomicron and very-low-density lipoprotein (VLDL) formation.[1] Dietary fat cannot be absorbed, and lipoproteins in both metabolic pathways are virtually absent from serum, TC is typically < 45 mg/dL (< 1.16 mmol/L), TGs are < 20 mg/dL (< 0.23 mmol/L), and LDL is undetectable. The condition is often first noticed in infants with fat malabsorption, steatorrhea, and failure to thrive.
  • Hypobetalipoproteinemia: is an autosomal dominant disorder, defined as below 5th percentile LDL-cholesterol or apolipoprotein (apo) B in the plasma. Subjects are generally heterozygous and asymptomatic except for TC < 120 mg/dL and LDL cholesterol < 80 mg/dL, TGs are normal. Homozygous patients have lower lipid levels (TC < 80 mg/dL, LDL cholesterol < 20 mg/dL), or absent apo B synthesis, leading to symptoms and signs of abetalipoproteinemia.[2]
  • Chylomicron retention disease: is a very rare autosomal recessive condition caused by an unknown mutation leading to deficient apo B secretion from enterocytes. Chylomicron synthesis is absent, but VLDL synthesis remains intact.

Secondary Lipoprotein Disorders

Hypolipedemia has been found in association with different clinical conditions.

  • Anemia: Hypolipedemia has been identified in association with different types of anemia e.g.congenital dyserythropoietic anemia, congenital spherocytosis, sickle cell anemia, beta-thalassemia, aplastic anemia, and sideroblastic anemia.[3][4][5][6][7] The exact etiology of hypolipidemia in anemic patients is not known, some studies outlined different mechanisms,[8][7] another study suggest that hypolipidemia might be the cause rather than the consequence of anemia, which is explained by that cholesterol deficiency leads to rigidity of the erythrocytes, making them more prone to destruction.[9]
  • Hyperthyroidism: Thyroid hormone influence lipid metabolism and are common in dyslipidemic patients, and its dysfunction affect composition and transport of lipoproteins,[10] hence the importance of Biochemical screening for thyroid dysfunction in all dyslipidemic patients.
  • Critical illness: Cholesterol levels drop at the onset of acute illness, and normalize after recovery. This may predispose the critically ill patient to sepsis and adrenal failure, and early enteral nutrition and tight glycemic control recommended to accelerate the recovery of the cholesterol levels.[11][12]
  • Malignancy: Several epidemiological studies suggested an inverse relation between serum cholesterol level and cancer mortality.[13]
  • Malabsorption: Fat malabsorption can lead to hypolipidemia, as the dietary fats constitute the exogenous source of body lipids. Brar et al demonstrated that celiac disease is associated with hypocholesterolemia and a gluten-free diet will result in rising of total cholesterol and HDL.[14]
  • Infection: The chronic effect of proinflammatory cytokines on lipoprotein metabolism seen in acute and chronic, bacterial, viral, and parasitic infections all might induce hypocholesterolemia.[15]
  • Chronic liver disease: Hypolipidemia is frequently observed in severe chronic hepatic insufficiency, as the hepatocytes is the main site for lipid metabolism.[16]
  • Chronic inflammation: In the acute phase response to inflammation, reduction in plasma lipid levels is a well known phenomenon, it is explained by the chronic effect of proinflammatory cytokines on lipoprotein metabolism.[17][18]

References

  1. Benayoun L, Granot E, Rizel L, Allon-Shalev S, Behar DM, Ben-Yosef T (2007). "Abetalipoproteinemia in Israel: evidence for a founder mutation in the Ashkenazi Jewish population and a contiguous gene deletion in an Arab patient". Mol Genet Metab. 90 (4): 453–7. doi:10.1016/j.ymgme.2006.12.010. PMID 17275380.
  2. Schonfeld G, Lin X, Yue P (2005). "Familial hypobetalipoproteinemia: genetics and metabolism". Cell Mol Life Sci. 62 (12): 1372–8. doi:10.1007/s00018-005-4473-0. PMID 15818469.
  3. Shalev H, Kapelushnik J, Moser A, Knobler H, Tamary H (2007). "Hypocholesterolemia in chronic anemias with increased erythropoietic activity". Am J Hematol. 82 (3): 199–202. doi:10.1002/ajh.20804. PMID 17039515.
  4. Johnsson R, Saris NE (1981). "Plasma and erythrocyte lipids in hereditary spherocytosis". Clin Chim Acta. 114 (2–3): 263–8. PMID 7285349.
  5. Shores J, Peterson J, VanderJagt D, Glew RH (2003). "Reduced cholesterol levels in African-American adults with sickle cell disease". J Natl Med Assoc. 95 (9): 813–7. PMC 2594470. PMID 14527048.
  6. Hartman C, Tamary H, Tamir A, Shabad E, Levine C, Koren A; et al. (2002). "Hypocholesterolemia in children and adolescents with beta-thalassemia intermedia". J Pediatr. 141 (4): 543–7. doi:10.1067/mpd.2002.127498. PMID 12378195.
  7. 7.0 7.1 Yokoyama M, Suto Y, Sato H, Arai K, Waga S, Kitazawa J; et al. (2000). "Low serum lipids suggest severe bone marrow failure in children with aplastic anemia". Pediatr Int. 42 (6): 613–9. PMID 11192516.
  8. Asai K, Kuzuya M, Naito M, Funaki C, Kuzuya F (1988). "Effects of splenectomy on serum lipids and experimental atherosclerosis". Angiology. 39 (6): 497–504. PMID 3377269.
  9. Pok SJ, Deutsch E, Nemesánszky E, Sas G, Pálos LA, Bräuer H; et al. (1980). "[Cholesterol deficiency. A pathogenetic factor in chronic anemias? Preliminary report of a study in three states (author's transl)]". MMW Munch Med Wochenschr. 122 Suppl 3: S123–31. PMID 6779152.
  10. Liberopoulos EN, Elisaf MS (2002). "Dyslipidemia in patients with thyroid disorders". Hormones (Athens). 1 (4): 218–23. PMID 17018450.
  11. Marik PE (2006). "Dyslipidemia in the critically ill". Crit Care Clin. 22 (1): 151–9, viii. doi:10.1016/j.ccc.2005.08.008. PMID 16399025.
  12. Dunham CM, Fealk MH, Sever WE (2003). "Following severe injury, hypocholesterolemia improves with convalescence but persists with organ failure or onset of infection". Crit Care. 7 (6): R145–53. doi:10.1186/cc2382. PMC 374375. PMID 14624689.
  13. Tomiki Y, Suda S, Tanaka M, Okuzawa A, Matsuda M, Ishibiki Y; et al. (2004). "Reduced low-density-lipoprotein cholesterol causing low serum cholesterol levels in gastrointestinal cancer: a case control study". J Exp Clin Cancer Res. 23 (2): 233–40. PMID 15354407.
  14. Brar P, Kwon GY, Holleran S, Bai D, Tall AR, Ramakrishnan R; et al. (2006). "Change in lipid profile in celiac disease: beneficial effect of gluten-free diet". Am J Med. 119 (9): 786–90. doi:10.1016/j.amjmed.2005.12.025. PMID 16945614.
  15. Bentz MH, Magnette J (1998). "[Hypocholesterolemia during the acute phase of an inflammatory reaction of infectious origin. 120 cases]". Rev Med Interne. 19 (3): 168–72. PMID 9775136.
  16. D'Arienzo A, Manguso F, Scaglione G, Vicinanza G, Bennato R, Mazzacca G (1998). "Prognostic value of progressive decrease in serum cholesterol in predicting survival in Child-Pugh C viral cirrhosis". Scand J Gastroenterol. 33 (11): 1213–8. PMID 9867102.
  17. Elmehdawi R (2008). "Hypolipidemia: a word of caution". Libyan J Med. 3 (2): 84–90. doi:10.4176/071221. PMC 3074286. PMID 21499464.
  18. Ettinger WH, Sun WH, Binkley N, Kouba E, Ershler W (1995). "Interleukin-6 causes hypocholesterolemia in middle-aged and old rhesus monkeys". J Gerontol A Biol Sci Med Sci. 50 (3): M137–40. PMID 7743398.

Template:WH Template:WS