High HDL prognosis and complications: Difference between revisions

Jump to navigation Jump to search
Rim Halaby (talk | contribs)
Rim Halaby (talk | contribs)
Line 10: Line 10:


====Niacin====
====Niacin====
Niacin therapy has been associated with increasing levels of [[HDL]] and decreasing cardiovascular risks.  Shown below is a table summarizing some studies that have investigated the role of niacin in increasing [[HDL]].
According to several studies, [[niacin]] therapy is associated with increasing levels of [[HDL]] and decreasing cardiovascular events.  Increase in [[HDL]] level by niacin can be attributed to the direct effect of the drug itself as well as to niacin-induced decrease in triglyceride level. [[Niacin]] not only elevates HDL levels, but also improves the [[lipoprotein]] profile as a whole as it decreases LDL and triglyceridesThe direct effect of increasing HDL and improving cardiovascular outcomes is difficult to interpret as niacin's effects are not only limited to HDL but also include [[LDL]] and [[triglyceride]].
 
Shown below is a table summarizing some studies that have investigated the role of niacin in increasing [[HDL]].


{| {| class="wikitable" border="1"
{| {| class="wikitable" border="1"

Revision as of 14:08, 9 October 2013

High Density Lipoprotein Microchapters

Home

Patient information

Overview

Historical Perspective

Classification

Physiology

Pathophysiology

Causes

Low HDL
High HDL

Epidemiology and Demographics

Screening

Natural History, Complications and Prognosis

Diagnosis

HDL Laboratory Test

Treatment

Medical Therapy

Prevention

Future or Investigational Therapies

Clinical Trials

Landmark Trials

List of All Trials

Case Studies

Case #1

High HDL prognosis and complications On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of High HDL prognosis and complications

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on High HDL prognosis and complications

CDC on High HDL prognosis and complications

High HDL prognosis and complications in the news

Blogs on High HDL prognosis and complications

Directions to Hospitals Treating High density lipoprotein

Risk calculators and risk factors for High HDL prognosis and complications

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mugilan Poongkunran M.B.B.S [2]

Overview

Epidemiological studies have shown an inverse relationship between HDL-C levels and CVD risks.[1][2][3] The protective role of HDL against CVD can be explained by the antiatherogenic and cardioprotective actions of HDL through reverse cholesterol transport, endothelial protection, anti-inflammatory activity, antioxidant and antithrombotic effects; however, it should be noted that HDL particles are heterogeneous in size and composition and they may be differentially associated with cardiovascular risks. The strong negative association between HDL level and CVD risks has lead to the development of the “HDL-C hypothesis” which suggests that raising HDL level with pharmacological intervention is likely to reduce cardiovascular risks. In fact, HDL based therapies are challenging and their efficacy in reducing cardiovascular risks has not been uniform among all studies. While some studies reported that raising HDL-cholesterol in patients with a low baseline serum concentration may be effective for secondary prevention of coronary heart disease, other studies failed to decrease cardiovascular risks by raising HDL.

Prognosis and Complications

HDL Raising Therapies

Niacin

According to several studies, niacin therapy is associated with increasing levels of HDL and decreasing cardiovascular events. Increase in HDL level by niacin can be attributed to the direct effect of the drug itself as well as to niacin-induced decrease in triglyceride level. Niacin not only elevates HDL levels, but also improves the lipoprotein profile as a whole as it decreases LDL and triglycerides. The direct effect of increasing HDL and improving cardiovascular outcomes is difficult to interpret as niacin's effects are not only limited to HDL but also include LDL and triglyceride.

Shown below is a table summarizing some studies that have investigated the role of niacin in increasing HDL.

Trial Treatment Increase in HDL Follow up
ARBITER 2 Trial[4] Extended release Niacin in patients on statin 21% 12 months
ARBITER 3 Trial[5] Extended release Niacin in patients on statin 9.6 +/- 12.5 mg/dL 24 months
CLAS 1 Trial[6] Niacin and colestipol 37% 2 years
CLAS 2 TRIAL[6] Niacin and colestipol 37% 4 years
HATS Trial[7] Niacin and simvastatin +/- antioxidants 26% 3 years
Coronary Drug Project[8] Niacin or clofibrate - 6 years and 15 years
Stockholm Ischemic Heart Disease Study[9] Niacin + Clofibrate - 5 years
FATS[10] Lovastatin + colestipol
Niacin + Colestipol
15%
43%
2.5 years
FATS Extended follow-up Niacin + lovastatin + colestipol - 10 years
UCSF-SCOR[11] Niacin + colestipol +/- Lovastatin and diet 28% 2 years

Challenging HDL-C Hypothesis

Studies have proven the inverse relationship between HDL levels and cardiovascular risks. Several therapies were designed to increase HDL levels aiming for secondary prevention of coronary heart diseases. While some trials succeeded to improve the cardiovascular outcomes by increasing HDL quantity, other trials failed to achieve this goal. The failure of these trials have raised questions regarding the efficacy of HDL-targeted therapies and the concept of improving HDL quality rather than quantity. The main trials that failed to improve cardiovascular outcomes by raising HDL levels are ILLUSTRATE, RADIANCE 1, RADIANCE 2, ILLUMINATE Trial and Dal-OUTCOMES Trial which investigated CETP inhibitors as well as AIM-HIGH Trial which investigated the combination of niacin and statin. The failure of the CETP inhibitors studies can be attributed to the associated increase in blood pressure or direct impairment of the HDL quality by the CETP inhibitor.[12]

Trial Name Drug HDL Increase Endpoints
ILLUSTRATE Torcetrapib 61% There was no significant decrease in coronary atherosclerosis.
There was increase in blood pressure.[13]
RADIANCE 1 Torcetrapib 24.5±0.4 mg/dL There was no significant relationship between HDL levels and carotid intima-media thickness.
There was increase in blood pressure.[14]
RADIANCE 2 Torcetrapib 63.4% There was no significant relationship between HDL levels and carotid intima-media thickness.
There was increase in blood pressure.[15]
ILLUMINATE Trial Torcetrapib 72.1% Hazard ratio for death was 1.58 in torcetrapib group at the end of the study (p=0.006).
Torcetrapib group had a 1.25 hazard ratio for primary outcomes (p=0.001), mostly significant for unstable angina (p=0.001) and least important for stroke (0.74).
Significant increase in adverse events in torcetrapib group was reported: Hypertension, peripheral edema, angina pectoris, dyspnea, and headache (p<0.001).[16]
Dal-OUTCOMES Trial Dalcetrapib 31-40% Dalcetrapib had no significant effect on primary end point or the frequency of any primary end point component with a hazard ratio of 1.04 only.[17]
AIM-HIGH Trial Niacin + Statin 25% There was no reduction in the rate of primary endpoint or all-cause mortality with niacin.
Moreover, there was a trend towards more ischemic strokes in the niacin group.

References

  1. Khera AV, Rader DJ (2010). "Future therapeutic directions in reverse cholesterol transport". Curr Atheroscler Rep. 12 (1): 73–81. doi:10.1007/s11883-009-0080-0. PMC 3315100. PMID 20425274.
  2. Emerging Risk Factors Collaboration. Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK; et al. (2009). "Major lipids, apolipoproteins, and risk of vascular disease". JAMA. 302 (18): 1993–2000. doi:10.1001/jama.2009.1619. PMC 3284229. PMID 19903920. Review in: Ann Intern Med. 2010 Feb 16;152(4):JC-212
  3. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD; et al. (1989). "High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies". Circulation. 79 (1): 8–15. PMID 2642759.
  4. Taylor AJ, Sullenberger LE, Lee HJ, Lee JK, Grace KA (2004). "Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins". Circulation. 110 (23): 3512–7. doi:10.1161/01.CIR.0000148955.19792.8D. PMID 15537681.
  5. Taylor AJ, Lee HJ, Sullenberger LE (2006). "The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3". Curr Med Res Opin. 22 (11): 2243–50. doi:10.1185/030079906X148508. PMID 17076985.
  6. 6.0 6.1 Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH (1990). "Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up". JAMA. 264 (23): 3013–7. PMID 2243429.
  7. Brown BG, Zhao XQ, Chait A; et al. (2001). "Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease". The New England Journal of Medicine. 345 (22): 1583–92. doi:10.1056/NEJMoa011090. PMID 11757504. Unknown parameter |month= ignored (help)
  8. "Clofibrate and niacin in coronary heart disease". JAMA. 231 (4): 360–81. 1975. PMID 1088963.
  9. Carlson LA, Rosenhamer G (1988). "Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid". Acta Med Scand. 223 (5): 405–18. PMID 3287837.
  10. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C; et al. (1990). "Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B." N Engl J Med. 323 (19): 1289–98. doi:10.1056/NEJM199011083231901. PMID 2215615.
  11. Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ (1990). "Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens". JAMA. 264 (23): 3007–12. PMID 2243428.
  12. Joy T, Hegele RA (2008). "Is raising HDL a futile strategy for atheroprotection?". Nat Rev Drug Discov. 7 (2): 143–55. doi:10.1038/nrd2489. PMID 18239670.
  13. Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT; et al. (2007). "Effect of torcetrapib on the progression of coronary atherosclerosis". N Engl J Med. 356 (13): 1304–16. doi:10.1056/NEJMoa070635. PMID 17387129.
  14. Vergeer M, Bots ML, van Leuven SI, Basart DC, Sijbrands EJ, Evans GW; et al. (2008). "Cholesteryl ester transfer protein inhibitor torcetrapib and off-target toxicity: a pooled analysis of the rating atherosclerotic disease change by imaging with a new CETP inhibitor (RADIANCE) trials". Circulation. 118 (24): 2515–22. doi:10.1161/CIRCULATIONAHA.108.772665. PMID 19029469.
  15. Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH; et al. (2007). "Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial". Lancet. 370 (9582): 153–60. doi:10.1016/S0140-6736(07)61088-5. PMID 17630038.
  16. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M; et al. (2007). "Effects of torcetrapib in patients at high risk for coronary events". N Engl J Med. 357 (21): 2109–22. doi:10.1056/NEJMoa0706628. PMID 17984165.
  17. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J; et al. (2012). "Effects of dalcetrapib in patients with a recent acute coronary syndrome". N Engl J Med. 367 (22): 2089–99. doi:10.1056/NEJMoa1206797. PMID 23126252.


Template:WikiDoc Sources