Pulseless electrical activity resident survival guide: Difference between revisions
Rim Halaby (talk | contribs) |
Rim Halaby (talk | contribs) |
||
Line 66: | Line 66: | ||
==Don'ts== | ==Don'ts== | ||
* Don't routinely use cricoid pressure during airway management of patients in cardiac arrest. | * Don't routinely use cricoid pressure during airway management of patients in cardiac arrest. | ||
* Don't | * Don't administer atropine in the management of pulseless electrical activity as it is no longer recommnded. | ||
==References== | ==References== |
Revision as of 03:57, 18 December 2013
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mahmoud Sakr, M.D. [2]
Definition
Pulseless electrical activity is defined as the absence of a pulse or cardiac contractility despite the presence of electrocardiographic activity. The most common causes are respiratory failure and hypovolemia.
Causes
Life Threatening Causes
Pulseless electrical activity is a life-threatening condition and must be treated as such irrespective of the causes. Life-threatening conditions can result in death or permanent disability within 24 hours if left untreated.
Common Causes
The complete list of causes of PEA can be remembered using the mnemonic "The Hs and Ts".[1][2][3]
- Hypovolemia
- Hypoxia
- Hydrogen ions (Acidosis)
- Hypothermia
- Hyperkalemia or Hypokalemia
- Hypoglycemia
- Tablets or Toxins (Drug overdose) such as beta blockers, tricyclic antidepressants, or calcium channel blockers
- Tamponade
- Tension pneumothorax
- Thrombosis (Myocardial infarction)
- Thrombosis (Pulmonary embolism)
- Trauma (Hypovolemia from blood loss)
As noted by repeated balloon inflations in the cardiac catheterization laboratory, transient occlusion of the coronary artery does not cause PEA.
Management
Below is an algorithm summarizing the approach to a patient with pulseless electrical activity.
Pulseless electrical activity [4] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Start CPR for 2 minutes Give oxygen Attach monitor and defibrillator IV/IO access Epinephrine Q3-5 min Consider advanced airway, capnography | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rhythm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shockable | Non-shockable | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See VF/VT algorithm | CPR for 2 minutes Treat Hs&Ts Epinephrine Q3-5min | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rhythm | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shockable | Non-shockable | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ROSC(return of spontaneous circulation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Post–Cardiac Arrest Care | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The algorithm is based on the 2010 American Heart Association ACLS algorithm for PEA.[5]
Do's
- Efficiency of CPR can be determined by
- Monitoring of chest compression rate and depth
- Adequacy of chest wall relaxation
- Length and duration of pauses in compression and number and depth of ventilations delivered
- Physiologic parameters; partial pressure of end-tidal CO2 [PETCO2], arterial pressure during the relaxation phase of chest compressions, central venous oxygen saturation [ScvO2]
- Remember that the foundation of successful ACLS is good BLS , represented in prompt high-quality CPR with minimal interruptions.[6][7]
- A new class I recommendation is the use of quantitative waveform capnography for confirmation and monitoring of endotracheal tube placement.
- Supraglottic advanced airways continues to be an alternative to endotracheal intubation for airway management during CPR.
Don'ts
- Don't routinely use cricoid pressure during airway management of patients in cardiac arrest.
- Don't administer atropine in the management of pulseless electrical activity as it is no longer recommnded.
References
- ↑ ACLS: Principles and Practice. p. 71-87. Dallas: American Heart Association, 2003. ISBN 0-87493-341-2.
- ↑ ACLS for Experienced Providers. p. 3-5. Dallas: American Heart Association, 2003. ISBN 0-87493-424-9.
- ↑ "2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care - Part 7.2: Management of Cardiac Arrest." Circulation 2005; 112: IV-58 - IV-66.
- ↑ "The Approach to Cardiac Arrest".
- ↑ Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R; et al. (2010). "Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 122 (18 Suppl 3): S640–56. doi:10.1161/CIRCULATIONAHA.110.970889. PMID 20956217.
- ↑ Edelson DP, Abella BS, Kramer-Johansen J, Wik L, Myklebust H, Barry AM; et al. (2006). "Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest". Resuscitation. 71 (2): 137–45. doi:10.1016/j.resuscitation.2006.04.008. PMID 16982127.
- ↑ Eftestøl T, Sunde K, Steen PA (2002). "Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest". Circulation. 105 (19): 2270–3. PMID 12010909.