Diltiazem hydrochloride tablet clinical pharmacology: Difference between revisions

Jump to navigation Jump to search
(Created page with "__NOTOC__ {{Diltiazem}} {{CMG}}; {{AE}} {{AK}} <ref name="dailymed.nlm.nih.gov">{{Cite web | last = | first = | title = CARDIZEM (DILTIAZEM HYDROCHLORIDE) TABLET, COA...")
 
No edit summary
Line 3: Line 3:
{{CMG}}; {{AE}} {{AK}}
{{CMG}}; {{AE}} {{AK}}


==CLINICAL PHARMACOLOGY==


The therapeutic benefits achieved with CARDIZEM are believed to be related to its ability to inhibit the influx of calcium ions during membrane depolarization of cardiac and vascular smooth muscle.


===Mechanisms of Action===


Although precise mechanisms of its [[antianginal ]]action are still being delineated, CARDIZEM is believed to act in the following ways:


1.
Angina Due to [[Coronary Artery Spasm]]. CARDIZEM has been shown to be a potent dilator of coronary arteries both [[epicardial ]]and [[subendocardial]]. Spontaneous and ergonovine-induced coronary artery spasm are inhibited by CARDIZEM.
2.
Exertional [[Angina]]. CARDIZEM has been shown to produce increases in exercise tolerance, probably due to its ability to reduce myocardial oxygen demand. This is accomplished via reductions in heart rate and systemic blood pressure at submaximal and maximal exercise workloads.


<ref name="dailymed.nlm.nih.gov">{{Cite web  | last =  | first =  | title = CARDIZEM (DILTIAZEM HYDROCHLORIDE) TABLET, COATED [BTA PHARMACEUTICALS] | url = http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=461fe23f-4453-4e3f-9621-0e3fda057d14 | publisher =  | date =  | accessdate = 5 March 2014 }}</ref>
In animal models, diltiazem interferes with the slow inward (depolarizing) current in excitable tissue. It causes excitation-contraction uncoupling in various myocardial tissues without changes in the configuration of the action potential. Diltiazem produces relaxation of coronary vascular smooth muscle and dilation of both large and small coronary arteries at drug levels which cause little or no negative inotropic effect. The resultant increases in coronary blood flow (epicardial and subendocardial) occur in ischemic and nonischemic models and are accompanied by dose-dependent decreases in systemic blood pressure and decreases in peripheral resistance.


===Hemodynamic and Electrophysiologic Effects===
Like other [[calcium antagonists]], diltiazem decreases [[sinoatrial ]]and [[atrioventricular ]]conduction in isolated tissues and has a negative inotropic effect in isolated preparations. In the intact animal, prolongation of the AH interval can be seen at higher doses.
In man, diltiazem prevents spontaneous and [[ergonovine]]-provoked [[coronary artery spasm]]. It causes a decrease in [[peripheral vascular resistance]] and a modest fall in blood pressure, and in exercise tolerance studies in patients with ischemic heart disease, reduces the heart rate-blood pressure product for any given workload. Studies to date, primarily in patients with good ventricular function, have not revealed evidence of a negative inotropic effect; cardiac output, ejection fraction, and left ventricular end-diastolic pressure have not been affected. There are as yet few data on the interaction of diltiazem and beta-blockers. Resting heart rate is usually unchanged or slightly reduced by diltiazem.
Intravenous diltiazem in doses of 20 mg prolongs AH conduction time and [[AV node]] functional and effective refractory periods approximately 20%. In a study involving single oral doses of 300 mg of CARDIZEM in six normal volunteers, the average maximum PR prolongation was 14% with no instances of greater than[[ first-degree AV block]]. Diltiazem-associated prolongation of the AH interval is not more pronounced in patients with first-degree heart block. In patients with sick sinus syndrome, diltiazem significantly prolongs sinus cycle length (up to 50% in some cases).
Chronic oral administration of CARDIZEM in doses of up to 240 mg/day has resulted in small increases in [[PR interval]] but has not usually produced abnormal prolongation.
===Pharmacokinetics and Metabolism===
Diltiazem is well absorbed from the gastrointestinal tract and is subject to an extensive first-pass effect, giving an absolute [[bioavailability ]](compared to intravenous dosing) of about 40%. CARDIZEM undergoes extensive metabolism in which 2% to 4% of the unchanged drug appears in the urine. In vitro binding studies show CARDIZEM is 70% to 80% bound to plasma proteins. Competitive in vitro ligand binding studies have also shown CARDIZEM binding is not altered by therapeutic concentrations of [[digoxin]], [[hydrochlorothiazide]], [[phenylbutazone]], [[propranolol]], [[salicylic acid]], or [[warfarin]]. The plasma elimination half-life following single or multiple drug administration is approximately 3.0 to 4.5 hours. Desacetyl diltiazem is also present in the plasma at levels of 10% to 20% of the parent drug and is 25% to 50% as potent as a coronary vasodilator as diltiazem. Minimum therapeutic plasma levels of CARDIZEM appear to be in the range of 50 to 200 ng/mL. There is a departure from linearity when dose strengths are increased. A study that compared patients with normal hepatic function to patients with [[cirrhosis ]]found an increase in half-life and a 69% increase in AUC (area-under-the-plasma concentration vs time curve) in the hepatically impaired patients. A single study in nine patients with severely impaired renal functions showed no difference in the pharmacokinetic profile of diltiazem as compared to patients with normal renal function.
CARDIZEM Tablets. Diltiazem is absorbed from the tablet formulation to about 98% of a reference solution. Single oral doses of 30 to 120 mg of CARDIZEM tablets result in detectable plasma levels within 30 to 60 minutes and peak plasma levels 2 to 4 hours after drug administration. As the dose of CARDIZEM tablets is increased from a daily dose of 120 mg (30 mg qid) to 240 mg (60 mg qid) daily, there is an increase in area-under-the-curve of 2.3 times. When the dose is increased from 240 mg to 360 mg, daily, there is an increase in area-under-the-curve of 1.8 times.<ref name="dailymed.nlm.nih.gov">{{Cite web  | last =  | first =  | title = CARDIZEM (DILTIAZEM HYDROCHLORIDE) TABLET, COATED [BTA PHARMACEUTICALS] | url = http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=461fe23f-4453-4e3f-9621-0e3fda057d14 | publisher =  | date =  | accessdate = 5 March 2014 }}</ref>


==References==
==References==

Revision as of 14:57, 5 March 2014

Diltiazem
CARDIZEM tablet® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings
Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
Clinical Studies
How Supplied/Storage and Handling
Patient Counseling Information
Labels and Packages
CARDIZEM LA tablet extended release® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings
Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
How Supplied/Storage and Handling
Labels and Packages
DILTIAZEM HYDROCHLORIDE injection® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings
Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
How Supplied/Storage and Handling
Patient Counseling Information
Labels and Packages
Clinical Trials on Diltiazem
ClinicalTrials.gov

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Abdurahman Khalil, M.D. [2]

CLINICAL PHARMACOLOGY

The therapeutic benefits achieved with CARDIZEM are believed to be related to its ability to inhibit the influx of calcium ions during membrane depolarization of cardiac and vascular smooth muscle.

Mechanisms of Action

Although precise mechanisms of its antianginal action are still being delineated, CARDIZEM is believed to act in the following ways:

1. Angina Due to Coronary Artery Spasm. CARDIZEM has been shown to be a potent dilator of coronary arteries both epicardial and subendocardial. Spontaneous and ergonovine-induced coronary artery spasm are inhibited by CARDIZEM. 2. Exertional Angina. CARDIZEM has been shown to produce increases in exercise tolerance, probably due to its ability to reduce myocardial oxygen demand. This is accomplished via reductions in heart rate and systemic blood pressure at submaximal and maximal exercise workloads.

In animal models, diltiazem interferes with the slow inward (depolarizing) current in excitable tissue. It causes excitation-contraction uncoupling in various myocardial tissues without changes in the configuration of the action potential. Diltiazem produces relaxation of coronary vascular smooth muscle and dilation of both large and small coronary arteries at drug levels which cause little or no negative inotropic effect. The resultant increases in coronary blood flow (epicardial and subendocardial) occur in ischemic and nonischemic models and are accompanied by dose-dependent decreases in systemic blood pressure and decreases in peripheral resistance.

Hemodynamic and Electrophysiologic Effects

Like other calcium antagonists, diltiazem decreases sinoatrial and atrioventricular conduction in isolated tissues and has a negative inotropic effect in isolated preparations. In the intact animal, prolongation of the AH interval can be seen at higher doses.

In man, diltiazem prevents spontaneous and ergonovine-provoked coronary artery spasm. It causes a decrease in peripheral vascular resistance and a modest fall in blood pressure, and in exercise tolerance studies in patients with ischemic heart disease, reduces the heart rate-blood pressure product for any given workload. Studies to date, primarily in patients with good ventricular function, have not revealed evidence of a negative inotropic effect; cardiac output, ejection fraction, and left ventricular end-diastolic pressure have not been affected. There are as yet few data on the interaction of diltiazem and beta-blockers. Resting heart rate is usually unchanged or slightly reduced by diltiazem.

Intravenous diltiazem in doses of 20 mg prolongs AH conduction time and AV node functional and effective refractory periods approximately 20%. In a study involving single oral doses of 300 mg of CARDIZEM in six normal volunteers, the average maximum PR prolongation was 14% with no instances of greater thanfirst-degree AV block. Diltiazem-associated prolongation of the AH interval is not more pronounced in patients with first-degree heart block. In patients with sick sinus syndrome, diltiazem significantly prolongs sinus cycle length (up to 50% in some cases).

Chronic oral administration of CARDIZEM in doses of up to 240 mg/day has resulted in small increases in PR interval but has not usually produced abnormal prolongation.

Pharmacokinetics and Metabolism

Diltiazem is well absorbed from the gastrointestinal tract and is subject to an extensive first-pass effect, giving an absolute bioavailability (compared to intravenous dosing) of about 40%. CARDIZEM undergoes extensive metabolism in which 2% to 4% of the unchanged drug appears in the urine. In vitro binding studies show CARDIZEM is 70% to 80% bound to plasma proteins. Competitive in vitro ligand binding studies have also shown CARDIZEM binding is not altered by therapeutic concentrations of digoxin, hydrochlorothiazide, phenylbutazone, propranolol, salicylic acid, or warfarin. The plasma elimination half-life following single or multiple drug administration is approximately 3.0 to 4.5 hours. Desacetyl diltiazem is also present in the plasma at levels of 10% to 20% of the parent drug and is 25% to 50% as potent as a coronary vasodilator as diltiazem. Minimum therapeutic plasma levels of CARDIZEM appear to be in the range of 50 to 200 ng/mL. There is a departure from linearity when dose strengths are increased. A study that compared patients with normal hepatic function to patients with cirrhosis found an increase in half-life and a 69% increase in AUC (area-under-the-plasma concentration vs time curve) in the hepatically impaired patients. A single study in nine patients with severely impaired renal functions showed no difference in the pharmacokinetic profile of diltiazem as compared to patients with normal renal function.

CARDIZEM Tablets. Diltiazem is absorbed from the tablet formulation to about 98% of a reference solution. Single oral doses of 30 to 120 mg of CARDIZEM tablets result in detectable plasma levels within 30 to 60 minutes and peak plasma levels 2 to 4 hours after drug administration. As the dose of CARDIZEM tablets is increased from a daily dose of 120 mg (30 mg qid) to 240 mg (60 mg qid) daily, there is an increase in area-under-the-curve of 2.3 times. When the dose is increased from 240 mg to 360 mg, daily, there is an increase in area-under-the-curve of 1.8 times.[1]

References

  1. "CARDIZEM (DILTIAZEM HYDROCHLORIDE) TABLET, COATED [BTA PHARMACEUTICALS]". Retrieved 5 March 2014.