Cardiogenic shock laboratory findings: Difference between revisions

Jump to navigation Jump to search
Joao Silva (talk | contribs)
Joao Silva (talk | contribs)
Line 19: Line 19:


===Complete Blood Count===
===Complete Blood Count===
An elevated [[white blood cell count]] ([[WBC]]), typically with a left shift. It may suggest an alternate diagnosis of [[septic shock]], however, it should be noted that the [[WBC]] can be elevated in [[STEMI]] due to demarginization. A reduced [[hemoglobin]] may suggest an alternate diagnosis of [[hypovolemic shock]]. A reduced platelet count may suggest an alternate diagnosis of [[septic shock]].
*Elevated [[white blood cell count]] ([[WBC]]), typically with a left shift. ''It may suggest an alternate diagnosis of [[septic shock]], however, it should be noted that the [[WBC]] can be elevated in [[STEMI]] due to demarginization. A reduced [[hemoglobin]] may suggest an alternate diagnosis of [[hypovolemic shock]]. A reduced platelet count may suggest an alternate diagnosis of [[septic shock]]''


===Renal Function===
===Renal Function===

Revision as of 19:24, 24 May 2014

Cardiogenic Shock Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cardiogenic shock from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cardiogenic shock laboratory findings On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cardiogenic shock laboratory findings

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cardiogenic shock laboratory findings

CDC on Cardiogenic shock laboratory findings

Cardiogenic shock laboratory findings in the news

Blogs on Cardiogenic shock laboratory findings

Directions to Hospitals Treating Cardiogenic shock

Risk calculators and risk factors for Cardiogenic shock laboratory findings

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]

Overview

Attending to the catastrophic outcome of cardiogenic shock in a very short time span, its diagnosis must be reached as early as possible in order for proper therapy to be started. This period until diagnosis and treatment initiation is particularly important in the case of cardiogenic shock since the mortality rate of this condition complicating acute-MI is very high, along with the fact that the ability to revert the damage caused, through reperfusion techniques, declines considerably with diagnostic delays. Therefore and due to the unstable state of these patients, the diagnostic evaluations are usually performed as supportive measures are initiated. The diagnostic measures should start with the proper history and physical examination, including blood pressure beasurements, followed by an EKG, chest x-ray and collection of blood samples for evaluation. The physician should have in mind the common features of shock, irrespective of the type of shock, in order to avoid delays in the diagnosis. Although not all shock patients present in the same way, these features include: abnormal mental status, cool extremities, clammy skin, manifestations of hypoperfusion, such as hypotension and oliguria, as well as evidence of metabolic acidosis on the blood results.[1]

Laboratory Findings

As in all laboratory tests, these must be ordered in order to confirm, sustain or rule out a clinical diagnosis that has been reached after proper history and physical examination have been made. In the case cardiogenic shock, these may include:[2]

Arterial Blood Gas

Markers of Myonecrosis

Complete Blood Count

Renal Function

Hypophosphatemia should be excluded as an underlying cause. Hypophosphatemia mediated myonecrosis can be observed with the refeeding syndrome as phosphate is used to convert glucose to glycogen.

Liver Function

Serum Lactate

The magnitude of lactic acidosis (Anion Gap Acidosis), along with compensatory decrease in serum bicarbonate, are markers of the extent of hypoperfusion and valuable in gauging a patient's prognosis.

References

  1. Longo, Dan L. (Dan Louis) (2012). Harrison's principles of internal medici. New York: McGraw-Hill. ISBN 978-0-07-174889-6.
  2. Longo, Dan L. (Dan Louis) (2012). Harrison's principles of internal medici. New York: McGraw-Hill. ISBN 978-0-07-174889-6.


Template:WikiDoc Sources