Pulmonary embolism classification: Difference between revisions

Jump to navigation Jump to search
Rim Halaby (talk | contribs)
Rim Halaby (talk | contribs)
No edit summary
Line 9: Line 9:


=== Acute Pulmonary Embolism ===
=== Acute Pulmonary Embolism ===
An acute PE can be either silent, symptomatic, or fatal.  Acute PE are also classified as [[Pulmonary embolism classification#Massive PE|massive pulmonary embolism]] or [[Pulmonary embolism classification#Submassive PE|submassive pulmonary embolism]] or [[Pulmonary embolism classification#Low-risk PE|low-risk pulmonary embolism]].  
An acute PE can be either silent, symptomatic, or fatal.  Acute PE are also classified as [[Pulmonary embolism classification#Massive PE|massive PE]] or [[Pulmonary embolism classification#Submassive PE|submassive PE]] or [[Pulmonary embolism classification#Low-risk PE|low-risk PE]].  


A PE is classified as acute if it meets any of the following criteria:
A PE is classified as acute if it meets any of the following criteria:
Line 20: Line 20:


=== Chronic Pulmonary Embolism ===
=== Chronic Pulmonary Embolism ===
A pulmonary embolism is classified as chronic if it meets any of the following criteria:
PE is classified as chronic if it meets any of the following criteria:
*'''Time Criterion:''' A markedly progressive development of [[dyspnea]] over time, generally as a result of [[pulmonary hypertension]].
*'''Time Criterion:''' A markedly progressive development of [[dyspnea]] over time, generally as a result of [[pulmonary hypertension]].
*'''Embolus Size Criteria:'''<ref name="pmid19168835">{{cite journal| author=Castañer E, Gallardo X, Ballesteros E, Andreu M, Pallardó Y, Mata JM et al.| title=CT diagnosis of chronic pulmonary thromboembolism. | journal=Radiographics | year= 2009 | volume= 29 | issue= 1 | pages= 31-50; discussion 50-3 | pmid=19168835 doi=10.1148/rg.291085061 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19168835  }} </ref>
*'''Embolus Size Criteria:'''<ref name="pmid19168835">{{cite journal| author=Castañer E, Gallardo X, Ballesteros E, Andreu M, Pallardó Y, Mata JM et al.| title=CT diagnosis of chronic pulmonary thromboembolism. | journal=Radiographics | year= 2009 | volume= 29 | issue= 1 | pages= 31-50; discussion 50-3 | pmid=19168835 doi=10.1148/rg.291085061 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19168835  }} </ref>
Line 29: Line 29:


==Classification Based on Disease Severity ==
==Classification Based on Disease Severity ==
In addition to the time of presentation and the size of the embolus, a pulmonary embolism can also be classified based on the severity of disease. PE can be classified into three types based on the severity: massive (5-10% of cases), submassive (20-25% of cases), and low-risk (70% of cases).
In addition to the time of presentation and the size of the [[embolus]], a PE can also be classified based on the severity of disease. PE can be classified into three types based on the severity: massive (5-10% of cases), submassive (20-25% of cases), and low-risk (70% of cases).


{| style="cellpadding=0; cellspacing= 0; width: 600px;"
{| style="cellpadding=0; cellspacing= 0; width: 600px;"
Line 51: Line 51:
=== Massive Pulmonary Embolism ===
=== Massive Pulmonary Embolism ===
* Massive PE accounts for 5-10% of pulmonary emboli.
* Massive PE accounts for 5-10% of pulmonary emboli.
*'''Historical Classification:''' A massive pulmonary embolism was defined using the Miller Index of angiographic burden.<ref name="pmid5557502">{{cite journal| author=Miller GA, Sutton GC, Kerr IH, Gibson RV, Honey M| title=Comparison of streptokinase and heparin in treatment of isolated acute massive pulmonary embolism. | journal=Br Heart J | year= 1971 | volume= 33 | issue= 4 | pages= 616 | pmid=5557502 | doi= | pmc= | url= }} </ref> This is a retrospective diagnosis based upon the [[pulmonary angiogram]].
*'''Historical Classification:''' A massive PE was defined using the Miller Index of angiographic burden.<ref name="pmid5557502">{{cite journal| author=Miller GA, Sutton GC, Kerr IH, Gibson RV, Honey M| title=Comparison of streptokinase and heparin in treatment of isolated acute massive pulmonary embolism. | journal=Br Heart J | year= 1971 | volume= 33 | issue= 4 | pages= 616 | pmid=5557502 | doi= | pmc= | url= }} </ref> This is a retrospective diagnosis based upon the [[pulmonary angiogram]].


*'''Contemporary Classification:''' Massive pulmonary embolism falls under the category "high risk patients" in the European guidelines. High risk PE patients have a risk of PE-related early mortality of > 15%.<ref name="pmid18757870">{{cite journal| author=Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P et al.| title=Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). | journal=Eur Heart J | year= 2008 | volume= 29 | issue= 18 | pages= 2276-315 | pmid=18757870 | doi=10.1093/eurheartj/ehn310 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18757870  }} </ref>
*'''Contemporary Classification:''' Massive PE falls under the category "high risk patients" in the European guidelines. High risk PE patients have a risk of PE-related early mortality of > 15%.<ref name="pmid18757870">{{cite journal| author=Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P et al.| title=Guidelines on the diagnosis and management of acute : the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). | journal=Eur Heart J | year= 2008 | volume= 29 | issue= 18 | pages= 2276-315 | pmid=18757870 | doi=10.1093/eurheartj/ehn310 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18757870  }} </ref>


* According to the [[American Heart Association]], massive PE is characterized by the presence of:
* According to the [[American Heart Association]], massive PE is characterized by the presence of:
Line 65: Line 65:
* Submassive PE accounts for 20-25% of pulmonary emboli.
* Submassive PE accounts for 20-25% of pulmonary emboli.


* Submassive pulmonary embolism falls under the category "intermediate risk patients" in the European guidelines. Intermediate risk PE patients have a risk of PE-related early mortality ranging between 3 and 15%.<ref name="pmid18757870">{{cite journal| author=Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P et al.| title=Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). | journal=Eur Heart J | year= 2008 | volume= 29 | issue= 18 | pages= 2276-315 | pmid=18757870 | doi=10.1093/eurheartj/ehn310 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18757870  }} </ref><br>  
* Submassive PE falls under the category "intermediate risk patients" in the European guidelines. Intermediate risk PE patients have a risk of PE-related early mortality ranging between 3 and 15%.<ref name="pmid18757870">{{cite journal| author=Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P et al.| title=Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). | journal=Eur Heart J | year= 2008 | volume= 29 | issue= 18 | pages= 2276-315 | pmid=18757870 | doi=10.1093/eurheartj/ehn310 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18757870  }} </ref><br>  


* According to the [[American Heart Association]], submassive PE is characterized by:
* According to the [[American Heart Association]], submassive PE is characterized by:
Line 72: Line 72:
''AND'' <br>
''AND'' <br>
Absence of [[hypotension|systemic hypotension]] (systolic blood pressure >90 mm Hg)<ref name="pmid8914880">{{cite journal |author=Cannon CP, Goldhaber SZ |title=Cardiovascular risk stratification of pulmonary embolism |journal=Am. J. Cardiol. |volume=78 |issue=10 |pages=1149–51 |year=1996 |month=November |pmid=8914880 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/S0002914996005802 |accessdate=2011-12-21}}</ref> <ref name="pmid21422387">{{cite journal| author=Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ et al.| title=Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. | journal=Circulation| year= 2011 | volume= 123 | issue= 16 | pages= 1788-830 | pmid=21422387 | doi=10.1161/CIR.0b013e318214914f | pmc= |url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21422387 }} </ref>
Absence of [[hypotension|systemic hypotension]] (systolic blood pressure >90 mm Hg)<ref name="pmid8914880">{{cite journal |author=Cannon CP, Goldhaber SZ |title=Cardiovascular risk stratification of pulmonary embolism |journal=Am. J. Cardiol. |volume=78 |issue=10 |pages=1149–51 |year=1996 |month=November |pmid=8914880 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/S0002914996005802 |accessdate=2011-12-21}}</ref> <ref name="pmid21422387">{{cite journal| author=Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ et al.| title=Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. | journal=Circulation| year= 2011 | volume= 123 | issue= 16 | pages= 1788-830 | pmid=21422387 | doi=10.1161/CIR.0b013e318214914f | pmc= |url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21422387 }} </ref>
* Submassive pulmonary embolism patients share the following characteristics:<ref name="pmid10077516">{{cite journal |author=Ribeiro A, Lindmarker P, Johnsson H, Juhlin-Dannfelt A, Jorfeldt L |title=Pulmonary embolism: one-year follow-up with echocardiography doppler and five-year survival analysis |journal=Circulation |volume=99 |issue=10 |pages=1325–30 |year=1999 |month=March |pmid=10077516 |doi= |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=10077516 |accessdate=2011-12-21}}</ref><ref name="pmid19041539">{{cite journal |author=Fengler BT, Brady WJ |title=Fibrinolytic therapy in pulmonary embolism: an evidence-based treatment algorithm |journal=Am J Emerg Med |volume=27 |issue=1 |pages=84–95 |year=2009 |month=January |pmid=19041539 |doi=10.1016/j.ajem.2007.10.021 |url=http://linkinghub.elsevier.com/retrieve/pii/S0735-6757(07)00699-7 |accessdate=2011-12-21}}</ref>
* Submassive PE patients share the following characteristics:<ref name="pmid10077516">{{cite journal |author=Ribeiro A, Lindmarker P, Johnsson H, Juhlin-Dannfelt A, Jorfeldt L |title=Pulmonary embolism: one-year follow-up with echocardiography doppler and five-year survival analysis |journal=Circulation |volume=99 |issue=10 |pages=1325–30 |year=1999 |month=March |pmid=10077516 |doi= |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=10077516 |accessdate=2011-12-21}}</ref><ref name="pmid19041539">{{cite journal |author=Fengler BT, Brady WJ |title=Fibrinolytic therapy in pulmonary embolism: an evidence-based treatment algorithm |journal=Am J Emerg Med |volume=27 |issue=1 |pages=84–95 |year=2009 |month=January |pmid=19041539 |doi=10.1016/j.ajem.2007.10.021 |url=http://linkinghub.elsevier.com/retrieve/pii/S0735-6757(07)00699-7 |accessdate=2011-12-21}}</ref>
** A significantly higher rate of in-hospital complications.
** A significantly higher rate of in-hospital complications.
** A higher potential for long-term [[pulmonary hypertension]] and cardiopulmonary disease.
** A higher potential for long-term [[pulmonary hypertension]] and cardiopulmonary disease.


* Though patients with submassive pulmonary emboli may initially appear hemodynamically and clinically stable, there is potential to undergo a cycle of progressive [[right ventricular failure]]. A submassive pulmonary embolism requires continuous monitoring to prevent irreversible damage and death.<ref name="pmid8914880">{{cite journal |author=Cannon CP, Goldhaber SZ |title=Cardiovascular risk stratification of pulmonary embolism |journal=Am. J. Cardiol. |volume=78 |issue=10 |pages=1149–51 |year=1996 |month=November |pmid=8914880 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/S0002914996005802 |accessdate=2011-12-21}}</ref>
* Though patients with submassive pulmonary emboli may initially appear hemodynamically and clinically stable, there is potential to undergo a cycle of progressive [[right ventricular failure]]. A submassive PE requires continuous monitoring to prevent irreversible damage and death.<ref name="pmid8914880">{{cite journal |author=Cannon CP, Goldhaber SZ |title=Cardiovascular risk stratification of pulmonary embolism |journal=Am. J. Cardiol. |volume=78 |issue=10 |pages=1149–51 |year=1996 |month=November |pmid=8914880 |doi= |url=http://linkinghub.elsevier.com/retrieve/pii/S0002914996005802 |accessdate=2011-12-21}}</ref>


====Right Ventricular Dysfunction====
====Right Ventricular Dysfunction====
Line 98: Line 98:


==== Saddle Pulmonary Embolism ====
==== Saddle Pulmonary Embolism ====
* A saddle pulmonary embolism is classified as an embolus that lodges at the bifurcation of the main [[pulmonary artery]] into the right and left pulmonary arteries.
* A saddle PE is classified as an embolus that lodges at the bifurcation of the main [[pulmonary artery]] into the right and left pulmonary arteries.
* Saddle pulmonary embolisms are typically classified as submassive.
* A saddle PE IS typically classified as submassive.


=== Low-Risk Pulmonary Embolism ===
=== Low-Risk Pulmonary Embolism ===

Revision as of 16:17, 7 July 2014

Pulmonary Embolism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pulmonary Embolism from other Diseases

Epidemiology and Demographics

Risk Factors

Triggers

Natural History, Complications and Prognosis

Diagnosis

Diagnostic criteria

Assessment of Clinical Probability and Risk Scores

Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores

History and Symptoms

Physical Examination

Laboratory Findings

Arterial Blood Gas Analysis

D-dimer

Biomarkers

Electrocardiogram

Chest X Ray

Ventilation/Perfusion Scan

Echocardiography

Compression Ultrasonography

CT

MRI

Treatment

Treatment approach

Medical Therapy

IVC Filter

Pulmonary Embolectomy

Pulmonary Thromboendarterectomy

Discharge Care and Long Term Treatment

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Follow-Up

Support group

Special Scenario

Pregnancy

Cancer

Trials

Landmark Trials

Case Studies

Case #1

Pulmonary embolism classification On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pulmonary embolism classification

CDC on Pulmonary embolism classification

Pulmonary embolism classification in the news

Blogs on Pulmonary embolism classification

Directions to Hospitals Treating Pulmonary embolism classification

Risk calculators and risk factors for Pulmonary embolism classification

Editor(s)-In-Chief: The APEX Trial Investigators, C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Rim Halaby, M.D. [2]

Overview

Pulmonary embolism (PE) can be classified based on the time course of symptom presentation (acute and chronic) and the overall severity of disease (stratified based upon three levels of risk: massive, submassive, and low-risk). Massive PE is characterised by the presence of either sustained hypotension, or pulselessness, or bradycardia. Submassive PE is characterized by the presence of either right ventricular dysfunction or myocardial necrosis in the absence of hypotension. In low risk PE, there is absence of hypotension, shock, right ventricular dysfunction and myocardial necrosis.[1]

Classification Based on Acuity and Size

Acute Pulmonary Embolism

An acute PE can be either silent, symptomatic, or fatal. Acute PE are also classified as massive PE or submassive PE or low-risk PE.

A PE is classified as acute if it meets any of the following criteria:

  • Time Criterion: Symptom onset and physical sign presentation occur immediately after obstruction of pulmonary vessels.
  • Embolus Size Criteria:

Chronic Pulmonary Embolism

PE is classified as chronic if it meets any of the following criteria:

  • Time Criterion: A markedly progressive development of dyspnea over time, generally as a result of pulmonary hypertension.
  • Embolus Size Criteria:[2]
    • Embolus is eccentric and contiguous with the vessel wall.
    • Embolus reduces the arterial diameter by ≥ 50%.
    • Evidence of recanalization within the thrombus.
    • Presence of an arterial web.

Classification Based on Disease Severity

In addition to the time of presentation and the size of the embolus, a PE can also be classified based on the severity of disease. PE can be classified into three types based on the severity: massive (5-10% of cases), submassive (20-25% of cases), and low-risk (70% of cases).

Classification of PE by Severity Criteria[1]
Massive PE
(also known as high risk PE)
- Sustained hypotension (systolic blood pressure <90 mm Hg), not due to arrhythmia, hypovolemia, sepsis, or left ventricular dysfunction, and either lasting for at least 15 minutes or necessitating the administration of inotropes

OR
- Pulselessness
OR
- Persistent profound bradycardia (heart rate < 40 bpm) plus findings of shock

Submassive PE
(also known as intermediate risk PE)
- Right ventricular dysfunction OR myocardial necrosis

AND
- Absence of systemic hypotension (systolic blood pressure >90 mm Hg)

Low risk PE - Absence of hypotension, shock, right ventricular dysfunction and myocardial necrosis

Massive Pulmonary Embolism

  • Massive PE accounts for 5-10% of pulmonary emboli.
  • Historical Classification: A massive PE was defined using the Miller Index of angiographic burden.[3] This is a retrospective diagnosis based upon the pulmonary angiogram.
  • Contemporary Classification: Massive PE falls under the category "high risk patients" in the European guidelines. High risk PE patients have a risk of PE-related early mortality of > 15%.[4]

Sustained hypotension (systolic blood pressure <90 mm Hg), not due to arrhythmia, hypovolemia, sepsis, or left ventricular dysfunction, and either lasting for at least 15 minutes or necessitating the administration of inotropes
OR
Pulselessness
OR
Persistent profound bradycardia (heart rate < 40 bpm) plus findings of shock[1]

Submassive Pulmonary Embolism

  • Submassive PE accounts for 20-25% of pulmonary emboli.
  • Submassive PE falls under the category "intermediate risk patients" in the European guidelines. Intermediate risk PE patients have a risk of PE-related early mortality ranging between 3 and 15%.[4]

Right ventricular dysfunction OR myocardial necrosis
AND
Absence of systemic hypotension (systolic blood pressure >90 mm Hg)[5] [1]

  • Submassive PE patients share the following characteristics:[6][7]
    • A significantly higher rate of in-hospital complications.
    • A higher potential for long-term pulmonary hypertension and cardiopulmonary disease.
  • Though patients with submassive pulmonary emboli may initially appear hemodynamically and clinically stable, there is potential to undergo a cycle of progressive right ventricular failure. A submassive PE requires continuous monitoring to prevent irreversible damage and death.[5]

Right Ventricular Dysfunction

Right ventricular (RV) dysfunction is characterized by the presence of AT LEAST ONE of the following:[1][5]

Myocardial Necrosis

Myocardial necrosisis defined as the presence of:[1][5]

OR

Saddle Pulmonary Embolism

  • A saddle PE is classified as an embolus that lodges at the bifurcation of the main pulmonary artery into the right and left pulmonary arteries.
  • A saddle PE IS typically classified as submassive.

Low-Risk Pulmonary Embolism

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ; et al. (2011). "Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association". Circulation. 123 (16): 1788–830. doi:10.1161/CIR.0b013e318214914f. PMID 21422387.
  2. Castañer E, Gallardo X, Ballesteros E, Andreu M, Pallardó Y, Mata JM; et al. (2009). "CT diagnosis of chronic pulmonary thromboembolism". Radiographics. 29 (1): 31–50, discussion 50-3. PMID doi=10.1148/rg.291085061 19168835 doi=10.1148/rg.291085061 Check |pmid= value (help).
  3. Miller GA, Sutton GC, Kerr IH, Gibson RV, Honey M (1971). "Comparison of streptokinase and heparin in treatment of isolated acute massive pulmonary embolism". Br Heart J. 33 (4): 616. PMID 5557502.
  4. 4.0 4.1 4.2 Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P; et al. (2008). "Guidelines on the diagnosis and management of acute : the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870.
  5. 5.0 5.1 5.2 5.3 Cannon CP, Goldhaber SZ (1996). "Cardiovascular risk stratification of pulmonary embolism". Am. J. Cardiol. 78 (10): 1149–51. PMID 8914880. Retrieved 2011-12-21. Unknown parameter |month= ignored (help)
  6. Ribeiro A, Lindmarker P, Johnsson H, Juhlin-Dannfelt A, Jorfeldt L (1999). "Pulmonary embolism: one-year follow-up with echocardiography doppler and five-year survival analysis". Circulation. 99 (10): 1325–30. PMID 10077516. Retrieved 2011-12-21. Unknown parameter |month= ignored (help)
  7. Fengler BT, Brady WJ (2009). "Fibrinolytic therapy in pulmonary embolism: an evidence-based treatment algorithm". Am J Emerg Med. 27 (1): 84–95. doi:10.1016/j.ajem.2007.10.021. PMID 19041539. Retrieved 2011-12-21. Unknown parameter |month= ignored (help)

Template:WH Template:WS