Medullary thyroid cancer medical therapy

Jump to navigation Jump to search

Medullary thyroid cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Medullary thyroid cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

CT

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Medullary thyroid cancer medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Medullary thyroid cancer medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Medullary thyroid cancer medical therapy

CDC on Medullary thyroid cancer medical therapy

Medullary thyroid cancer medical therapy in the news

Blogs on Medullary thyroid cancer medical therapy

Directions to Hospitals Treating Medullary thyroid cancer

Risk calculators and risk factors for Medullary thyroid cancer medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ammu Susheela, M.D. [2]

Overview

The predominant therapy for medullary thyroid cancer is surgical resection. Adjunctive chemoradiation may be required. The optimal therapy for medullary thyroid cancer depends on the stage at diagnosis.

Medical Therapy

Protein kinase inhibitors

  • Vandetanib, trade name Caprelsa, was the first drug (April 2011) to be approved by US Food and Drug Administration (FDA) for treatment of late-stage (metastatic) medullary thyroid cancer in adult patients who are ineligible for surgery.[1]
  • Cabozantinib, was granted marketing approval (November 2012) by the U.S. FDA for this indication.[2] Cabozantinib which is a potent inhibitor of RET, MET and VEGF was evaluated in a double-blind placebo controlled trial.
  • Clinical trials of protein kinase inhibitors,[3] which block the abnormal kinase proteins involved in the development and growth of medullary cancer cells, showed clear evidence of response in 10-30% of patients. In the majority of responders there has been less than a 30% decrease in tumor mass, yet the responses have been durable; responses have been stable for periods exceeding 3 years. The major side effects of this class of drug include hypertension, nausea, diarrhea, some cardiac electrical abnormalities, and thrombotic or bleeding episodes.

Adult

Radiation

  • External beam radiotherapy is recommended when there is a high risk of regional recurrence, even after optimum surgical treatment.
  • Unlike other differentiated thyroid carcinoma, there is no role for radioiodine treatment in medullary-type disease.[8]

Hormone Therapy

  • Hormonal therapy is given to replace the thyroid hormones normally made by the thyroid gland. Thyroid stimulation hormone suppression, brought on by thyroid hormone replacement, does not reduce the chance of medullary thyroid cancer recurrence like it does in papillary and follicular thyroid cancer.

Reference

  1. "FDA approves new treatment for rare form of thyroid cancer". Retrieved 7 April 2011.
  2. "FDA approves Cometriq to treat rare type of thyroid cancer". Retrieved 29 November 2012.
  3. "American Thyroid Association - Thyroid Clinical Trials". Retrieved 2007-12-21.
  4. Thornton K, Kim G, Maher VE, Chattopadhyay S, Tang S, Moon YJ, Song P, Marathe A, Balakrishnan S, Zhu H, Garnett C, Liu Q, Booth B, Gehrke B, Dorsam R, Verbois L, Ghosh D, Wilson W, Duan J, Sarker H, Miksinski SP, Skarupa L, Ibrahim A, Justice R, Murgo A, Pazdur R (July 2012). "Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary". Clin. Cancer Res. 18 (14): 3722–30. doi:10.1158/1078-0432.CCR-12-0411. PMID 22665903.
  5. Wells SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ (January 2012). "Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial". J. Clin. Oncol. 30 (2): 134–41. doi:10.1200/JCO.2011.35.5040. PMC 3675689. PMID 22025146.
  6. Schlumberger M, Elisei R, Müller S, Schöffski P, Brose M, Shah M, Licitra L, Krajewska J, Kreissl MC, Niederle B, Cohen E, Wirth L, Ali H, Clary DO, Yaron Y, Mangeshkar M, Ball D, Nelkin B, Sherman S (November 2017). "Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma". Ann. Oncol. 28 (11): 2813–2819. doi:10.1093/annonc/mdx479. PMC 5834040. PMID 29045520. Vancouver style error: initials (help)
  7. Hoy SM (August 2014). "Cabozantinib: a review of its use in patients with medullary thyroid cancer". Drugs. 74 (12): 1435–44. doi:10.1007/s40265-014-0265-x. PMID 25056653.
  8. Quayle FJ, Moley JF (2005). "Medullary thyroid carcinoma: including MEN 2A and MEN 2B syndromes". J Surg Oncol. 89 (3): 122–9. doi:10.1002/jso.20184. PMID 15719378.