Tularemia overview

Jump to navigation Jump to search

Tularemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Tularemia from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Diagnostic Findings

Treatment

Medical Therapy

Prevention

Case Studies

Case #1

Tularemia overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Tularemia overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Tularemia overview

CDC on Tularemia overview

Tularemia overview in the news

Blogs on Tularemia overview

Directions to Hospitals Treating Tularemia

Risk calculators and risk factors for Tularemia overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]


Overview

Tularemia is a serious infectious disease caused by the bacterium Francisella tularensis. The disease is endemic in North America, and parts of Europe and Asia. The primary vectors are ticks and deer flies, but the disease can also be spread through other arthropods. Animals such as rabbits, prairie dogs, hares and muskrats serve as reservoir hosts. The disease is named after Tulare County, California.


Historical Perspective

Franciscella tularensis was first discovered by George Walter McCoy in 1911. The organism was originally named Bacterium tularense, after Tulare county where the causative agent was first discovered. Expounding upon McCoy's previous research, Dr. Edward Francis furthered global understanding of tularemia, through the discovery of animal reservoirs, vectors, and clinical manifestations. The ailment soon became frequent with hunters, cooks and agricultural workers.[1] Tularemia was later identified as a potential tool for bio-terrorism.

Classification

Tularemia may be classified according the original mode of transmission. The mode of transmission will ultimately dictate the resulting clinical manifestations associated with tularemia infections. There are five common forms of tularemia, they include ulceroglandular, glandular, oculoglandular, oropharyngeal, and pneumonic.[2]

Pathophysiology

Causes

Francisella tularensis is one of the most infective bacteria known; fewer than ten organisms can cause disease leading to severe illness. The bacteria penetrate into the body through damaged skin and mucous membranes, or through inhalation. Humans are most often infected by tick bite or through handling an infected animal. Ingesting infected water, soil, or food can also cause infection. Tularemia can also be acquired by inhalation; hunters are at a higher risk for this disease because of the potential of inhaling the bacteria during the skinning process. It has been contracted from inhaling particles from an infected rabbit ground up in a lawnmower (see below). Tularemia is not spread directly from person to person.

Francisella tularensis is an intracellular bacterium, meaning that it is able to live as a parasite within host cells. It primarily infects macrophages, a type of white blood cell. It is thus able to evade the immune system. The course of disease involves spread of the organism to multiple organ systems, including the lungs, liver, spleen, and lymphatic system. The course of disease is similar regardless of the route of exposure. Mortality in untreated (pre-antibiotic-era) patients has been as high as 50% in the pneumoniac and typhoidal forms of the disease, which however account for less than 10% of cases.[3] Overall mortality was 7% for untreated cases, and the disease responds well to antibiotics with a fatality rate of about 2%. The exact cause of death is unclear, but it is thought be a combination of multiple organ system failures.

Differential Diagnosis

General symptoms reported within the early stages tularemia often resemble those of other tick-borne diseases. These symptoms include fever, chills, headache, and other non-specific flu like symptoms. Later stages of tularemia may include pneumonic clinical manifestations and ulcers in the epidermal tissue.[2]

Epidemiology and Demographics

Tularemia has long been a silent disease plaguing the worldwide community. However, it is difficult to quantify the total worldwide incidence since tularemia is rarely reported. North America and Eurasia are commonly referred to as endemic areas. The majority of cases in the United States have been reported in the South-central and Western states. Seasonal distribution of tularemia infection shows a higher incidence between June and September. A higher incidence has also been reported in children under the age of 10 years.

Risk Factors

The greatest risk factor for contracting tularemia is the bite of an infected tick. Other risk factors include handling contact with infected animals, contamination of water sources, and potential bioterrorism. Individuals are at a higher risk of infection during the late spring and summer months. Children and males are at a higher risk of infection.

Natural History, Complications & Prognosis

The disease has a very rapid onset, with headache, fatigue, dizziness, muscle pains, loss of appetite and nausea. Face and eyes redden and become inflamed. Inflammation spreads to the lymph nodes, which enlarge and may suppurate (mimicking bubonic plague). Lymph node involvement is accompanied by a high fever. Death may result.


History and Symptoms

Symptoms associated with tularemia often include non-specific flu like symptoms. As the disease progresses tularemia will differentiate into five more specific variations. Symptoms and clinical manifestations will differentiate according to the type of tularemia infection.

Physical Examination

Typically signs of tularemia include a biphaisc fever, tachycardia, and changes in blood pressure. Depending on the mode of transmission, tularemia may also cause skin ulcers, eye infection, or swelling of the throat.

Laboratory Findings

There are a variety of lab diagnostic tests used to diagnose tularemia including gram stains, bacteria cultures,biochemical,and antibody fluorescence tests. Gram stains and bacteria cultures are useful in identifying F.tularensis. Unfortunately, these diagnostics offer difficult interpretations with extensive procedures. Antibody fluorescence allows for quick and effective testing. This method is extraordinarily important in diagnosing pneumonic variations of tularemia, as these variations are often associated with a higher mortality rate.

Other Diagnostic Findings

The mainstay of therapy for tularemia is antimicrobial therapy. The drug of choice is Streptomycin. Other pharmacologic therapies for tularemia include Gentamicin, Tetracyclines, Chloramphenicol, or Fluoroquinolones.

Medical Therapy

The mainstay of therapy for tularemia is antimicrobial therapy. The drug of choice is Streptomycin. Other pharmacologic therapies for tularemia include Gentamicin, Tetracyclines, Chloramphenicol, or Fluoroquinolones.

Prevention

Tularemia prevention strategies are based on avoiding potentially, infected, tick bites or animal flesh and fecal matter. Avoiding tick bites may be accomplished through limited exposure to endemic areas. However if it is impossible or impractical to avoid these areas, several preventative strategies may be implemented. These strategies are indicated under the Prevention title below. Other prevention strategies include a proper removal of the tick. This process is also outlined below under the title, the best way to remove a tick. Other strategies include daily cleaning, to avoid fecal matter in dust, or proper attire during butchery.

References

Template:WH Template:WS