Venezuelan equine encephalitis
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Anthony Gallo, B.S. [2]
Synonyms and keywords: VEE; VEEV; Venezuelan encephalitis; Venezuelan equine encephalomyelitis
Overview
Historical Perspective
Venezuelan equine encephalitis was first discovered in 1938 after the virus was isolated from the brains of dead horses following an outbreak in the Venezuelan countryside.[1] There have been several outbreaks of Venezuelan equine encephalitis. In 1995, the last major outbreak occurred in Venezuela and Columbia and resulted in approximately 75,000 cases, of which 3,000 had severe neurological complications and 300 progressed to mortality.[2] The last reported case of Venezuelan equine encephalitis in the United States occurred in southern Texas in 1972.[3]
Classification
Venezuelan equine encephalitis may be classified according to location of the disease into 2 subtypes: systemic or encephalitic. Venezuelan equine encephalitis may also be classified according to neuroinvasiveness of the disease into 2 subtypes: neuroinvasive and non-neuroinvasive.[4] Venezuelan equine encephalitis belongs to the Group IV positive-sense ssRNA virus within the Togaviridae family of viruses, and the genus Alphavirus. Venezuelan equine encephalitis is closely related to eastern equine encephalitis virus and western equine encephalitis virus. Venezuelan equine encephalitis is known as an arbovirus, or an arthropod-borne virus.
Pathophysiology
Venezuelan equine encephalitis virus is usually transmitted via mosquitos to the human host. Venezuelan equine encephalitis virus contains positive-sense viral RNA; this RNA has its genome directly utilized as if it were mRNA, producing a single protein which is modified by host and viral proteins to form the various proteins needed for replication. The following table is a summary of the Venezuelan equine encephalitis virus:[5]
Characteristic | Data |
---|---|
Nucleic acid | RNA |
Sense | ssRNA(+) |
Virion | Enveloped |
Capsid | Spherical |
Symmetry | Yes; T=4 icosahedral |
Capsid monomers | 240 |
Monomer length (diameter) | 70 nm |
Additional envelope information | 80 spikes; each spike is a trimer of E1/E2 proteins |
Genome shape | Linear |
Genome length | 11-12 kb |
Nucleotide cap | Yes |
Polyadenylated tail | Yes |
Incubation period | 1-6 day(s) |
Venezuelan equine encephalitis is contracted by the bite of an infected mosquito, primarily Culex melanoconion and Aedes. Venezuelan equine encephalitis virus circulates between a mosquito vector, usually Culex melanoconion, and forest rodents in Central and South America. Transmission to humans requires mosquito species capable of creating a "bridge" between infected animals and uninfected humans, such as some Aedes and other Culex species. The incubation period is 1-6 day(s).[6] In contrast to many other arboviral infections, infected humans possess sufficient viremia to infect uninfected mosquitos.[7] Additionally, while a link has never been proven, there is speculation that transmission between humans is possible, as 40% of cases demonstrate infection in the pharynx.[8]
Venezuelan equine encephalitis virus is transmitted in the following pattern:[5]
- Attachment of the viral E glycoprotein to host receptors mediates clathrin-mediated endocytosis of virus into the host cell.
- Fusion of virus membrane with the host cell membrane. RNA genome is released into the cytoplasm.
- The positive-sense ssRNA virus is translated into a polyprotein, which is cleaved into non-structural proteins necessary for RNA synthesis (replication and transcription).
- Replication takes place in cytoplasmic viral factories at the surface of endosomes. A dsRNA genome is synthesized from the genomic ssRNA(+).
- The dsRNA genome is transcribed thereby providing viral mRNAs (new ssRNA(+) genomes).
- Expression of the subgenomic RNA (sgRNA) gives rise to the structural proteins.
- Virus assembly occurs at the endoplasmic reticulum.
- Virions bud at the endoplasmic reticulum, are transported to the Golgi apparatus, and then exit the cell via the secretory pathway.
Causes
Venezuelan equine encephalitis may be caused by Venezuelan equine encephalitis virus.
Differentiating Venezuelan equine encephalitis from other Diseases
Venezuelan equine encephalitis virus must be differentiated from other diseases that cause fever, headache, seizures, and altered mental status, such as:[7][9][10]
Disease | Findings |
---|---|
Eastern equine encephalitis | Eastern eqyube encephalitis presents with acute inflammation of the brain, caused by an arboviral infection; it is less severe than Eastern equine encephalitis. Other findings include fever, nausea, headache, vomiting, photophobia, seizures, and coma. |
Western equine encephalitis | Western equine encephalitis presents with acute inflammation of the brain, caused by an arboviral infection; it is less severe than Eastern equine encephalitis. Other findings include fever, nausea, headache, vomiting, photophobia, seizures, and coma. |
Vector-borne encephalitis | Vector-borne encephalitis presents with acute inflammation of the brain, caused by a bacterial infection; complications include severe brain damage as the inflamed brain pushes against the skull, potentially leading to mortality. |
Viral encephalitis | Viral encephalitis presents with acute inflammation of the brain, caused by a viral infection; complications include severe brain damage as the inflamed brain pushes against the skull, potentially leading to mortality. |
Encephalopathy | Encephalopathy presents with steady depression, generalized seizures. Generally absent are fever, headache, leukocytosis, and pleocytosis; MRI often appears normal. |
Meningitis | Meningitis presents with headache, altered mental status, and inflammation of the meninges, which may develop in the setting of an infection, physical injury, cancer, or certain drugs; it may have an indolent evolution, resolving on its own, or may present as an rapidly evolving inflammation, causing neurologic damage and possible mortality. |
Brain abscess | Brain abscess presents with an abscess in the brain caused by the inflammation and accumulation of infected material from local or remote infectious areas of the body; the infectious agent may also be introduced as a result of head trauma or neurological procedures. |
Acute disseminated encephalomyelitis (ADEM) | Acute disseminated encephalomyelitis presents with scattered foci of demyelination and perivenular inflammation; it can cause focal neurological signs and decreased ability to focus. |
Epidemiology and Demographics
The case-fatality rate of Venezuelan equine encephalitis is approximately 0.7.[11]
Age
Patients of all age groups may develop Venezuelan equine encephalitis. All age groups may be equally affected.[2]
Gender
Venezuelan equine encephalitis affects men and women equally.[2]
Race
There is no racial predilection for Venezuelan equine encephalitis.
Seasonal
Venezuelan equine encephalitis is most commonly observed in the summer months or after periods of heavy rainfall.
Geographic Distribution
The majority of Venezuelan equine encephalitis cases are reported in South America, specifically Columbia and Venezuela.
Risk Factors
- Common risk factors in the development of [disease name] are [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
Natural History, Complications and Prognosis
- The majority of patients with [disease name] remain asymptomatic for [duration/years].
- Early clinical features include [manifestation 1], [manifestation 2], and [manifestation 3].
- If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
- Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
- Prognosis is generally [excellent/good/poor], and the [1/5/10year mortality/survival rate] of patients with [disease name] is approximately [#%].
Diagnosis
Diagnostic Criteria
- The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met:
- [criterion 1]
- [criterion 2]
- [criterion 3]
- [criterion 4]
Symptoms
- [Disease name] is usually asymptomatic.
- Symptoms of [disease name] may include the following:
- [symptom 1]
- [symptom 2]
- [symptom 3]
- [symptom 4]
- [symptom 5]
- [symptom 6]
Physical Examination
- Patients with [disease name] usually appear [general appearance].
- Physical examination may be remarkable for:
- [finding 1]
- [finding 2]
- [finding 3]
- [finding 4]
- [finding 5]
- [finding 6]
Laboratory Findings
- There are no specific laboratory findings associated with [disease name].
- A [positive/negative] [test name] is diagnostic of [disease name].
- An [elevated/reduced] concentration of [serum/blood/urinary/CSF/other] [lab test] is diagnostic of [disease name].
- Other laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
Imaging Findings
- There are no [imaging study] findings associated with [disease name].
- [Imaging study 1] is the imaging modality of choice for [disease name].
- On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
- [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
- [Disease name] may also be diagnosed using [diagnostic study name].
- Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
- There is no treatment for [disease name]; the mainstay of therapy is supportive care.
- The mainstay of therapy for [disease name] is [medical therapy 1] and [medical therapy 2].
- [Medical therapy 1] acts by [mechanism of action 1].
- Response to [medical therapy 1] can be monitored with [test/physical finding/imaging] every [frequency/duration].
Surgery
- Surgery is the mainstay of therapy for [disease name].
- [Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
- [Surgical procedure] can only be performed for patients with [disease stage] [disease name].
Prevention
- There are no primary preventive measures available for [disease name].
- Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
- Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].
References
- ↑ Beck CE, Wyckoff RW (1938). "VENEZUELAN EQUINE ENCEPHALOMYELITIS". Science. 88 (2292): 530. doi:10.1126/science.88.2292.530. PMID 17840536.
- ↑ 2.0 2.1 2.2 Rivas F, Diaz LA, Cardenas VM, Daza E, Bruzon L, Alcala A; et al. (1997). "Epidemic Venezuelan equine encephalitis in La Guajira, Colombia, 1995". J Infect Dis. 175 (4): 828–32. PMID 9086137.
- ↑ Venezuelan Equine Encephalomyelitis - Fact Sheet. Canadian Food Inspection Agency (2012). http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/reportable/venezuelan-equine-encephalomyelitis/fact-sheet/eng/1329841926239/1329842048136 Accessed on March 31, 2016.
- ↑ Arboviral diseases, neuroinvasive and non-neuroinvasive 2015 Case Definition. National Notifiable Diseases Surveillance System (NNDSS). Centers for Disease Control (2015). https://wwwn.cdc.gov/nndss/conditions/arboviral-diseases-neuroinvasive-and-non-neuroinvasive/case-definition/2015/ Accessed on March 31, 2016.
- ↑ 5.0 5.1 Alphavirus. SIB Swiss Institute of Bioinformatics. http://viralzone.expasy.org/viralzone/all_by_species/625.html Accessed on March 15, 2016
- ↑ VENEZUELAN EQUINE ENCEPHALITIS VIRUS: PATHOGEN SAFETY DATA SHEET - INFECTIOUS SUBSTANCES. Public Health Agency of Canada. (2011) http://www.phac-aspc.gc.ca/lab-bio/res/psds-ftss/ven-encephalit-eng.php Accessed on March 31, 2016.
- ↑ 7.0 7.1 M.D. JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, Expert Consult Premium Edition. Saunders; 2014.
- ↑ Bowen GS, Calisher CH (1976). "Virological and serological studies of Venezuelan equine encephalomyelitis in humans". J Clin Microbiol. 4 (1): 22–7. PMC 274383. PMID 956360.
- ↑ Kennedy PG (2004). "Viral encephalitis: causes, differential diagnosis, and management". J Neurol Neurosurg Psychiatry. 75 Suppl 1: i10–5. PMC 1765650. PMID 14978145.
- ↑ Arboviral Infections (arthropod-borne encephalitis, eastern equine encephalitis, St. Louis encephalitis, California encephalitis, Powassan encephalitis, West Nile encephalitis). New York State Department of Health (2006). https://www.health.ny.gov/diseases/communicable/arboviral/fact_sheet.htm Accessed on February 23, 2016
- ↑ Weaver SC, Salas R, Rico-Hesse R, Ludwig GV, Oberste MS, Boshell J; et al. (1996). "Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. VEE Study Group". Lancet. 348 (9025): 436–40. PMID 8709783.