Hepatitis B overview

Jump to navigation Jump to search

Hepatitis Main Page

Hepatitis B

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Hepatitis B from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Ultrasound

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hepatitis B overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hepatitis B overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hepatitis B overview

CDC on Hepatitis B overview

Hepatitis B overview in the news

Blogs on Hepatitis B overview

Directions to Hospitals Treating Hepatitis B

Risk calculators and risk factors for Hepatitis B overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Jolanta Marszalek, M.D. [2]; João André Alves Silva, M.D. [3]; Sara Mehrsefat, M.D. [4]

Overview

Hepatitis B virus(HBV) is a double stranded DNA virus belonging to the family Hepadnaviridae. It is responsible for hepatitis B virus infection in humans that attacks the liver and causes both acute and chronic disease.

Historical Perspective

In the 5th century BCE, the first descriptions of hepatitis (epidemic jaundice) are generally attributed to Hippocrates.[1]In 1885, the earliest identifiable occurrence of hepatitis B virus was documented by Lurman.[2]In 1947, the current nomenclature of hepatitis A (so-called infectious hepatitis) and hepatitis B (so-called serum hepatitis) was proposed by MacCallum and Bauer. By this time, it was already known that in comparison with hepatitis A, hepatitis B. Throughout the 20th century, advancements in the recognition, isolation, classification, and prevention of hepatitis B were achieved. Today, the focus around HBV remains on the spread of awareness and prevention across the world, especially in endemic areas that would benefit greatly from immunization programs.[3][4]

Pathophysiology

The intracellular hepatitis B virus is a non-cytopathic virus that causes little or no damage to the cell.[5] During HBV infection, the host immune response causes both hepatocellular damage and viral clearance. The HBV virion binds to a receptor at the surface of the hepatocyte and enters the cell, where it uses the host's cell mechanisms to replicate its genome and proteins. Different viral antigens and antibodies are detected in serum throughout the course of the disease, such as: HBsAg, HBcAg, HBeAg, anti-HBs, anti-HBC and anti-HBe. Transmission occurs from exposure to infectious blood or body fluids. Hepatitis B is often associated with hepatocellular carcinoma. Immune complexes, such as surface antigen-antibody, are important in the pathogenesis of hepatitis B.[6][7]

Causes

The hepatitis B virus is responsible for causing hepatitis B. HBV is a double stranded DNA virus belonging to the family Hepadnaviridae. The viral particle consists of an outer lipid envelope and an icosahedral nucleocapsid core composed of protein. The nucleocapsid encloses the viral DNA. HBV DNA polymerase has reverse transcriptase activity. It shows tropism for hepatocytes. Humans are the only natural reservoir.

Differentiating Hepatitis B from other Diseases

Hepatitis B must be differentiated from other diseases that cause fever, nausea, vomiting, jaundice, hepatomegaly, icteric sclera, elevated ALT, AST, such as viral hepatitis(caused by other etiologic agents), alcoholic hepatitis, and autoimmune hepatitis.

Epidemiology and Demographics

Chronic Hepatitis B (HBV) is a major global health problem. According to the World Health Organization (WHO), more than 2 billion people have been infected with HBV. It is a major cause of chronic liver disease worldwide, affecting an estimated 1.25 million persons in the U.S., and more than 240 million people world wide.[8] [9]

Risk Factors

Generally, the highest risk for HBV infection is associated with lifestyles, occupations, or environments in which contact with blood from infected persons is frequent. High-risk populations include immigrants/refugees from areas of high HBV endemicity, clients in mental health institutions, injection drug users, and homosexually active men, patients of hemodialysis, and household contacts of HBV carriers. Perinatal transmission from mother to infant at birth is very efficient. If the mother is positive for both HBsAg and HBeAg, 70%–90% of infants will become infected in the absence of postexposure prophylaxis.[10]

Screening

High risk groups should be tested for HBV infection. These include immigrants/refugees from areas of intermediate or high endemicity, persons with chronically elevated aminotransferases, immunocompromised individuals, and persons with a history of injection drug use(IDU).

Screening for hepatocellular carcinoma should extend to Asian men over 40 years and Asian women over 50 years of age, persons with cirrhosis, persons with a family history of HCC, Africans over 20 years of age, and any HBV carrier over 40 years with persistent or intermittent ALT elevation and/or high HBV DNA level >2,000 IU/mL.

Natural History, Complications and Prognosis

The course of hepatitis B may be extremely variable. Hepatitis B has different clinical manifestations depending on the patient’s age at infection, immune status, and the stage at which the disease is recognized.[8] During the incubation period patients may experience flu-like symptoms, such as nausea, vomiting, and headaches. A person infected with hepatitis B virus may recover completely, become an asymptomatic carrier of the virus, develop chronic disease, or develop fulminant hepatitis. In acute hepatitis B, the incubation period may range from 45 to 120 days, depending on the amount of virus in the inoculum, host factors, and mode of transmission. These patients may experience the following symptoms: fatigue, nausea, vomiting, anorexia, abdominal discomfort, and jaundice. In most cases, no special diet or treatment are necessary. The risk of developing chronic hepatitis decreases with age, with infants having the highest risk. Chronic hepatitis may progress to: cirrhosis, liver failure, or hepatocellular carcinoma. In most cases the prognosis of acute hepatitis is good, with symptoms lasting 2 to 3 weeks. However, in infants and immunocompromised persons, the risk of developing chronic disease is increased.

Treatment

After infection with the hepatitis B virus, up to 95% of adults are able to eliminate the virus without treatment. Currently, there is no treatment available for acute hepatitis B. Symptomatic treatment of nausea, anorexia, vomiting, and other symptoms may be indicated. Early antiviral treatment may only be required in fewer than 1% of patients, whose hepatitis B takes a very aggressive course, such as in cases of fulminant hepatitis. Treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. Chronically infected individuals with persistently elevated serum alanine aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for therapy. Treatment lasts from six months to a year, depending on the medication and genotype. Although none of the available drugs can clear the infection, they can stop the virus from replicating, thus minimizing liver damage. These include antiviral drugs lamivudine, adefovir, tenofovir, telbivudine and entecavir, and immune system modulators, such as interferon alpha-2a and pegylated interferon-alpha-2a. The treatment reduces viral replication in the liver, thereby reducing the viral load.

Surgery

The treatment of hepatitis B usually involves no surgical procedures. However, among patients with advanced liver damage secondary to HBV infection or liver failure in fulminant hepatitis, liver transplantation may be beneficial.

References

  1. Center for Disease Control and Prevention.Epidemiology and Prevention of Vaccine Preventable Diseases 2012. http://www.cdc.gov/vaccines/pubs/pinkbook/hepa.html
  2. Hussey, Hugh H. (1981). "The Hepatitis B Saga". JAMA: The Journal of the American Medical Association. 245 (13): 1317. doi:10.1001/jama.1981.03310380021018. ISSN 0098-7484.
  3. Mahoney FJ (1999). "Update on diagnosis, management, and prevention of hepatitis B virus infection". Clin Microbiol Rev. 12 (2): 351–66. PMC 88921. PMID 10194463.
  4. Neefe, John R., Sydney S. Gellis, and Joseph Stokes. "Homologous serum hepatitis and infectious (epidemic) hepatitis: Studies in volunteers bearing on immunological and other characteristics of the etiological agents." The American journal of medicine 1.1 (1946): 3-22.
  5. World Health Organization, Guidelines for the Prevention, Care, and Treatment of persons with chronic Hepatitis B Infection. (March 2015). http://apps.who.int/iris/bitstream/10665/154590/1/9789241549059_eng.pdf Accessed on October 4th, 2016
  6. Zhang YY, Hu KQ (2015). "Rethinking the pathogenesis of hepatitis B virus (HBV) infection". J Med Virol. 87 (12): 1989–99. doi:10.1002/jmv.24270. PMID 25989114.
  7. Chang KM, Liu M (2016). "Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics". Curr Opin Pharmacol. 30: 93–105. doi:10.1016/j.coph.2016.07.013. PMID 27570126.
  8. 8.0 8.1 World Health Organization. 2014 Fact Sheet. Hepatitis B. http://www.who.int/mediacentre/factsheets/fs204/en/
  9. Center for Disease Control and Prevention. Guidelines for Hepatitis Sureveillance and Case Management 2009.http://www.cdc.gov/hepatitis/Statistics/SurveillanceGuidelines.htm
  10. Center for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases. Hepatitis B 2012.http://www.cdc.gov/vaccines/pubs/pinkbook/hepb.html


Template:WH Template:WS