Pulmonic regurgitation pathophysiology
Pulmonic regurgitation Microchapters |
Diagnosis |
---|
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Aravind Kuchkuntla, M.B.B.S[2], Aysha Anwar, M.B.B.S[3]
Overview
Pathophysiologic mechanism of pulmonic regurgitation include right ventricular overload resulting in right ventricular remodelling and progressive decline in function. The rate of decline in right ventricular systolic function is affected by associated conditions such as peripheral pulmonary artery stenosis and pulmonary hypertension which further increase the severity of pulmonary regurgitation.[1]
Pathophysiology
Pathophysiologic mechanism of pulmonic regurgitation may include the following steps:
- Patients with PR develop chronic right ventricular overload resulting in right ventricular remodelling and progressive decline in function.[1]
- Progressive dilation of the right ventricle results in functional tricuspid regurgitation and increases the risk of developing arrhythmias.
- The rate of decline in right ventricular systolic function is affected by associated conditions such as peripheral pulmonary artery stenosis and pulmonary hypertension which further increase the severity of pulmonary regurgitation.
- In patients with increased pulmonary artery pressure from dysfunction of LV or residual pulmonary artery stenosis increases the severity of PR.
- The severity of regurgitant jet is dependent on:[1]
- Size of the regurgitant orifice
- Afterload of the RV
- RV diastolic complaince
- Duration of RV diastole
References
- ↑ 1.0 1.1 1.2 Bigdelian H, Mardani D, Sedighi M (2015). "The Effect of Pulmonary Valve Replacement (PVR) Surgery on Hemodynamics of Patients Who Underwent Repair of Tetralogy of Fallot (TOF)". J Cardiovasc Thorac Res. 7 (3): 122–5. doi:10.15171/jcvtr.2015.26. PMC 4586599. PMID 26430501.